scholarly journals Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes

2020 ◽  
Author(s):  
Charlene Lancaster ◽  
Aaron Fountain ◽  
Elliott Somerville ◽  
Javal Sheth ◽  
Roaya M. Dayam ◽  
...  

AbstractDuring phagocytosis, phagocytes like macrophages engulf and sequester unwanted particles like bacteria into phagosomes. Phagosomes then fuse with lysosomes to mature into phagolysosomes, resulting in the degradation of the enclosed particle. Ultimately, phagosomes must be recycled to help recover membrane resources like lysosomes consumed during phagocytosis, a process referred to as phagosome resolution. Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation required cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we showed that the clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintain the degradative power of macrophages to handle multiple waves of phagocytosis.SummaryPhagocytes engulf particles into phagolysosomes for degradation. However, the ultimate fate of phagolysosomes is undefined. Lancaster, Fountain et al. show that phagosomes undergo fragmentation to reform lysosomes in a clathrin-dependent manner. This process is necessary to maintain the degradative capacity of phagocytes during subsequent phagocytosis.

2019 ◽  
Vol 5 (4) ◽  
pp. eaau7198 ◽  
Author(s):  
Sourav Maity ◽  
Christophe Caillat ◽  
Nolwenn Miguet ◽  
Guidenn Sulbaran ◽  
Gregory Effantin ◽  
...  

Many cellular processes such as endosomal vesicle budding, virus budding, and cytokinesis require extensive membrane remodeling by the endosomal sorting complex required for transport III (ESCRT-III). ESCRT-III protein family members form spirals with variable diameters in vitro and in vivo inside tubular membrane structures, which need to be constricted to proceed to membrane fission. Here, we show, using high-speed atomic force microscopy and electron microscopy, that the AAA-type adenosine triphosphatase VPS4 constricts and cleaves ESCRT-III CHMP2A-CHMP3 helical filaments in vitro. Constriction starts asymmetrically and progressively decreases the diameter of CHMP2A-CHMP3 tubular structure, thereby coiling up the CHMP2A-CHMP3 filaments into dome-like end caps. Our results demonstrate that VPS4 actively constricts ESCRT-III filaments and cleaves them before their complete disassembly. We propose that the formation of ESCRT-III dome-like end caps by VPS4 within a membrane neck structure constricts the membrane to set the stage for membrane fission.


2012 ◽  
Vol 109 (38) ◽  
pp. E2533-E2542 ◽  
Author(s):  
Michal Skruzny ◽  
Thorsten Brach ◽  
Rodolfo Ciuffa ◽  
Sofia Rybina ◽  
Malte Wachsmuth ◽  
...  

Dynamic actin filaments are a crucial component of clathrin-mediated endocytosis when endocytic proteins cannot supply enough energy for vesicle budding. Actin cytoskeleton is thought to provide force for membrane invagination or vesicle scission, but how this force is transmitted to the plasma membrane is not understood. Here we describe the molecular mechanism of plasma membrane–actin cytoskeleton coupling mediated by cooperative action of epsin Ent1 and the HIP1R homolog Sla2 in yeast Saccharomyces cerevisiae. Sla2 anchors Ent1 to a stable endocytic coat by an unforeseen interaction between Sla2’s ANTH and Ent1’s ENTH lipid-binding domains. The ANTH and ENTH domains bind each other in a ligand-dependent manner to provide critical anchoring of both proteins to the membrane. The C-terminal parts of Ent1 and Sla2 bind redundantly to actin filaments via a previously unknown phospho-regulated actin-binding domain in Ent1 and the THATCH domain in Sla2. By the synergistic binding to the membrane and redundant interaction with actin, Ent1 and Sla2 form an essential molecular linker that transmits the force generated by the actin cytoskeleton to the plasma membrane, leading to membrane invagination and vesicle budding.


1992 ◽  
Vol 119 (5) ◽  
pp. 1163-1171 ◽  
Author(s):  
E Smythe ◽  
L L Carter ◽  
S L Schmid

Using stage-specific assays for receptor-mediated endocytosis of transferrin (Tfn) into perforated A431 cells we show that purified adaptors stimulate coated pit assembly and ligand sequestration into deeply invaginated coated pits. Late events in endocytosis involving membrane fission and coated vesicle budding which lead to the internalization of Tfn are unaffected. AP2, plasma membrane adaptors, are active at physiological concentrations, whereas AP1, Golgi adaptors, are inactive. Adaptor-dependent stimulation of Tfn sequestration requires cytosolic clathrin, but is unaffected by clathrin purified from coated vesicles suggesting that soluble and assembled clathrin pools are functionally distinct. In addition to adaptors and cytosolic clathrin other, as yet unidentified, cytosolic factors are also required for efficient coated pit invagination. These results provide new insight into the mechanisms and regulation of coated pit assembly and invagination.


2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Charlene E. Lancaster ◽  
Aaron Fountain ◽  
Roaya M. Dayam ◽  
Elliott Somerville ◽  
Javal Sheth ◽  
...  

Phagocytes engulf unwanted particles into phagosomes that then fuse with lysosomes to degrade the enclosed particles. Ultimately, phagosomes must be recycled to help recover membrane resources that were consumed during phagocytosis and phagosome maturation, a process referred to as “phagosome resolution.” Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation requires cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we show that clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintaining the degradative power of macrophages to handle multiple waves of phagocytosis.


Author(s):  
Gemma A.J. Kuijpers ◽  
Harvey B. Pollard

Exocytotic fusion of granules in the adrenal medulla chromaffin cell is triggered by a rise in the concentration of cytosolic Ca2+ upon cell activation. The protein synexin, annexin VII, was originally found in the adrenal medulla and has been shown to cause aggregation and to support fusion of chromaffin granules in a Ca2+-dependent manner. We have previously suggested that synexin may there fore play a role in the exocytotic fusion process. In order to obtain more structural information on synexin, we performed immuno-electron microscopy on frozen ultrathin sections of both isolated chromaffin granules and chromaffin cells.Chromaffin granules were isolated from bovine adrenal medulla, and synexin was isolated from bovine lung. Granules were incubated in the presence or absence of synexin (24 μg per mg granule protein) and Ca2+ (1 mM), which induces maximal granule aggregation, in 0.3M sucrose-40m MMES buffer(pH 6.0). Granules were pelleted, washed twice in buffer without synexin and fixed with 2% glutaraldehyde- 2% para formaldehyde in 0.1 M phosphate buffer (GA/PFA) for 30 min. Chromaffin cells were isolated and cultured for 3-5 days, and washed and incubated in Krebs solution with or without 20 uM nicotine. Cells were fixed 90 sec after on set of stimulation with GA/PFA for 30 min. Fixed granule or cell pellets were washed, infiltrated with 2.3 M sucrose in PBS, mounted and frozen in liquid N2.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
Nasser M. Al-Daghri ◽  
Khalid M. Alkharfy ◽  
Nasiruddin Khan ◽  
Hanan A. Alfawaz ◽  
Abdulrahman S. Al-Ajlan ◽  
...  

The aim of our study was to evaluate the effects of vitamin D supplementation on circulating levels of magnesium and selenium in patients with type 2 diabetes mellitus (T2DM). A total of 126 adult Saudi patients (55 men and 71 women, mean age 53.6 ± 10.7 years) with controlled T2DM were randomly recruited for the study. All subjects were given vitamin D3 tablets (2000 IU/day) for six months. Follow-up mean concentrations of serum 25-hydroxyvitamin D [25-(OH) vitamin D] significantly increased in both men (34.1 ± 12.4 to 57.8 ± 17.0 nmol/L) and women (35.7 ± 13.5 to 60.1 ± 18.5 nmol/L, p < 0.001), while levels of parathyroid hormone (PTH) decreased significantly in both men (1.6 ± 0.17 to 0.96 ± 0.10 pmol/L, p = 0.003) and women (1.6 ± 0.17 to 1.0 ± 0.14 pmol/L, p = 0.02). In addition, there was a significant increase in serum levels of selenium and magnesium in men and women (p-values < 0.001 and 0.04, respectively) after follow-up. In women, a significant correlation was observed between delta change (variables at six months-variable at baseline) of serum magnesium versus high-density lipoprotein (HDL)-cholesterol (r = 0.36, p = 0.006) and fasting glucose (r = - 0.33, p = 0.01). In men, there was a significant correlation between serum selenium and triglycerides (r = 0.32, p = 0.04). Vitamin D supplementation improves serum concentrations of magnesium and selenium in a gender-dependent manner, which in turn could affect several cardiometabolic parameters such as glucose and lipids.


VASA ◽  
2014 ◽  
Vol 43 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Weibin Huang ◽  
Weiwei Qin ◽  
Lei Lv ◽  
Haoyv Deng ◽  
Hao Zhang ◽  
...  

Background: Duffy antigen / receptor for chemokines (DARC) possesses high affinity for several chemokine subgroups of CC and CXC. Although DARC has been shown to play a role in many inflammatory diseases, its effect on chronic venous disease (CVD) remains unidentified. We explored whether the expression of DARC in skin tissue was activated under venous hypertension as well as the relationships between DARC and inflammation. Materials and methods: The inflammation in a rat model of venous hypertension caused by a femoral arterial-venous fistula (AVF) was studied. At specified intervals the pressure in the femoral veins was recorded within 42 days. Hindlimb skin specimens were harvested at different time points. The expressions of DARC, interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) in skin tissue were examined. Mononuclear cells infiltrated in skin tissue were detected. Results: Femoral venous pressures in AVF groups increased significantly at different time points (P < 0.01). DARC was expressed in skin tissue and its expression level increased significantly in AVF groups from the 7nd day on and was enhanced in a time-dependent manner within 42 days (P < 0.05). Meanwhile, both MCP-1 and IL-8 had higher levels, accompanied by increased mononuclear cells infiltrating into skin tissue (P < 0.05). Conclusions: A rat AVF model which can maintain venous hypertension for at least 42 days is competent for researching the pathogenesis of CVD. DARC, which plays a role in the inflammation of skin tissue under venous hypertension, may become a new molecular target for diagnosis and treatment of CVD at a very early stage.


Sign in / Sign up

Export Citation Format

Share Document