scholarly journals Maternal approach behaviors toward neonatal calls are impaired by mother’s experiences of raising pups with a risk gene variant for autism

2020 ◽  
Author(s):  
Risa Kato ◽  
Akihiro Machida ◽  
Kensaku Nomoto ◽  
Gina Kang ◽  
Takeshi Hiramoto ◽  
...  

AbstractHow the intrinsic sequence structure of neonatal mouse pup ultrasonic vocalization (USV) and maternal experiences determine maternal behaviors in mice is poorly understood. Our previous work showed that pups with a Tbx1 heterozygous (HT) mutation, a genetic risk for autism spectrum disorder (ASD), emit altered call sequences that do not induce maternal approach behaviors in C57BL6/J mothers. Here, we tested how maternal approach behaviors induced by wild-type and HT USVs are influenced by the mother’s experience in raising pups of these two genotypes. The results showed that wild-type USVs were effective in inducing maternal approach behaviors when mothers raised wild-type but not HT pups. The USVs of HT pups were ineffective regardless of whether mothers raised HT or wild-type pups. However, the sequence structure of pup USVs had no effect on the general, non-directional incentive motivation of maternal behaviors. Our data show how the mother’s experience with a pup with a genetic risk for ASD alters the intrinsic incentive values of USV sequences in maternal approach behaviors.

2021 ◽  
Vol 22 (2) ◽  
pp. 772
Author(s):  
Javier Conde ◽  
Marlene Schwarzfischer ◽  
Egle Katkeviciute ◽  
Janine Häfliger ◽  
Anna Niechcial ◽  
...  

Environmental and genetic factors have been demonstrated to contribute to the development of inflammatory bowel disease (IBD). Recent studies suggested that the food additive; titanium dioxide (TiO2) might play a causative role in the disease. Therefore, in the present study we aimed to explore the interaction between the food additive TiO2 and the well-characterized IBD risk gene protein tyrosine phosphatase non-receptor type 2 (Ptpn2) and their role in the development of intestinal inflammation. Dextran sodium sulphate (DSS)-induced acute colitis was performed in mice lacking the expression of Ptpn2 in myeloid cells (Ptpn2LysMCre) or their wild type littermates (Ptpn2fl/fl) and exposed to the microparticle TiO2. The impact of Ptpn2 on TiO2 signalling pathways and TiO2-induced IL-1β and IL-10 levels were studied using bone marrow-derived macrophages (BMDMs). Ptpn2LysMCre exposed to TiO2 exhibited more severe intestinal inflammation than their wild type counterparts. This effect was likely due to the impact of TiO2 on the differentiation of intestinal macrophages, suppressing the number of anti-inflammatory macrophages in Ptpn2 deficient mice. Moreover, we also found that TiO2 was able to induce the secretion of IL-1β via mitogen-activated proteins kinases (MAPKs) and to repress the expression of IL-10 in bone marrow-derived macrophages via MAPK-independent pathways. This is the first evidence of the cooperation between the genetic risk factor Ptpn2 and the environmental factor TiO2 in the regulation of intestinal inflammation. The results presented here suggest that the ingestion of certain industrial compounds should be taken into account, especially in individuals with increased genetic risk


2021 ◽  
Author(s):  
Julia S. Lord ◽  
Sean M. Gay ◽  
Kathryn M. Harper ◽  
Viktoriya D. Nikolova ◽  
Kirsten M. Smith ◽  
...  

AbstractSleep disruption is a common comorbidity in patients with autism spectrum disorder (ASD), a condition diagnosed with a striking male bias of ∼4:1. It is unclear how sleep disruption contributes to ASD susceptibility, and the sex biased vulnerability. We examined sleep behavior and the effects of early life sleep disruption (ELSD) in developing mice bearing C-terminal truncation (ΔC) in ASD risk gene Shank3. Male and female Shank3ΔC/ΔC homozygotes showed clear sleep disruption early in postnatal life, compared to Shank3WT/ΔC heterozygotes and wild-type littermates, suggesting that sleep disruption may be an early symptom in the expression of ASD. We find that ELSD interacts with genetic vulnerability in Shank3WT/ΔC heterozygotes to drive lasting and sex-specific changes in behavior. Our results clearly show that sleep disruption during sensitive periods of postnatal development is causative of lasting changes in behavior in genetically vulnerable individuals, but in a striking sex-specific manner.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucia Janickova ◽  
Karin Farah Rechberger ◽  
Lucas Wey ◽  
Beat Schwaller

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kenneth S. Kendler ◽  
Henrik Ohlsson ◽  
Jan Sundquist ◽  
Kristina Sundquist

AbstractTo clarify the structure of genetic risks for 11 major psychiatric disorders, we calculated, from morbidity risks for disorders in 1st–5th degree relatives controlling for cohabitation effects, in the Swedish population born between 1932 and 1995 (n = 5,830,014), the family genetic risk scores (FGRS) for major depression (MD), anxiety disorders (AD), obsessive-compulsive disorder (OCD), bipolar disorder (BD), schizophrenia (SZ), bulimia (BUL), anorexia nervosa (AN), alcohol use disorder (AUD), drug use disorder (DUD), ADHD, and autism-spectrum disorder (ASD). For all affected individuals, we calculated their mean standardized FGRS for each disorder. The patterns of FGRS were quite similar for MD and AD, and for AUD and DUD, but substantially less similar for BUL and AN, BD and SZ, and ADHD and ASD. While OCD had high levels of FGRS for MD and AD, the overall FGRS profile differed considerably from MD and AD. ADHD FGRS scores were substantially elevated in AUD and DUD. FGRS scores for BD, OCD, AN, ASD, ADHD, and especially SZ were relatively disorder-specific while genetic risk for MD and AD had more generalized effects. The levels of FGRS for BMI, coronary artery disease, and educational attainment across our disorders replicated prior associations found using molecular genetic methods. All diagnostic categories examined had elevated FGRS for many disorders producing, for each condition, an informative FGRS profile. Using a novel method which approximates, from pedigree data, aggregate genetic risk, we have replicated and extended prior insights into the structure of genetic risk factors for key psychiatric illnesses.


2021 ◽  
pp. 1-12
Author(s):  
Simon Schmitt ◽  
Tina Meller ◽  
Frederike Stein ◽  
Katharina Brosch ◽  
Kai Ringwald ◽  
...  

Abstract Background MRI-derived cortical folding measures are an indicator of largely genetically driven early developmental processes. However, the effects of genetic risk for major mental disorders on early brain development are not well understood. Methods We extracted cortical complexity values from structural MRI data of 580 healthy participants using the CAT12 toolbox. Polygenic risk scores (PRS) for schizophrenia, bipolar disorder, major depression, and cross-disorder (incorporating cumulative genetic risk for depression, schizophrenia, bipolar disorder, autism spectrum disorder, and attention-deficit hyperactivity disorder) were computed and used in separate general linear models with cortical complexity as the regressand. In brain regions that showed a significant association between polygenic risk for mental disorders and cortical complexity, volume of interest (VOI)/region of interest (ROI) analyses were conducted to investigate additional changes in their volume and cortical thickness. Results The PRS for depression was associated with cortical complexity in the right orbitofrontal cortex (right hemisphere: p = 0.006). A subsequent VOI/ROI analysis showed no association between polygenic risk for depression and either grey matter volume or cortical thickness. We found no associations between cortical complexity and polygenic risk for either schizophrenia, bipolar disorder or psychiatric cross-disorder when correcting for multiple testing. Conclusions Changes in cortical complexity associated with polygenic risk for depression might facilitate well-established volume changes in orbitofrontal cortices in depression. Despite the absence of psychopathology, changed cortical complexity that parallels polygenic risk for depression might also change reward systems, which are also structurally affected in patients with depressive syndrome.


2016 ◽  
Vol 310 (7) ◽  
pp. H861-H872 ◽  
Author(s):  
Yujia Wang ◽  
Zenghui Wu ◽  
Eric Thorin ◽  
Johanne Tremblay ◽  
Julie L. Lavoie ◽  
...  

EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions, although their function in blood pressure (BP) control has not been studied in detail. In the present study, we report that Efnb3 gene knockout (KO) led to increased BP in female but not male mice. Vascular smooth muscle cells (VSMCs) were target cells for EFNB3 function in BP regulation. The deletion of EFNB3 augmented contractility of VSMCs from female but not male KO mice, compared with their wild-type (WT) counterparts. Estrogen augmented VSMC contractility while testosterone reduced it in the absence of EFNB3, although these sex hormones had no effect on the contractility of VSMCs from WT mice. The effect of estrogen on KO VSMC contractility was via a nongenomic pathway involving GPER, while that of testosterone was likely via a genomic pathway, according to VSMC contractility assays and GPER knockdown assays. The sex hormone-dependent contraction phenotypes in KO VSMCs were reflected in BP in vivo. Ovariectomy rendered female KO mice normotensive. At the molecular level, EFNB3 KO in VSMCs resulted in reduced myosin light chain kinase phosphorylation, an event enhancing sensitivity to Ca2+ flux in VSMCs. Our investigation has revealed previously unknown EFNB3 functions in BP regulation and show that EFNB3 might be a hypertension risk gene in certain individuals.


Neuroscience ◽  
2010 ◽  
Vol 168 (3) ◽  
pp. 797-810 ◽  
Author(s):  
K.L. Eagleson ◽  
M.C. Gravielle ◽  
L.J. Schlueter McFadyen-Ketchum ◽  
S.J. Russek ◽  
D.H. Farb ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Esther Suk King Lai ◽  
Hisako Nakayama ◽  
Taisuke Miyazaki ◽  
Takanobu Nakazawa ◽  
Katsuhiko Tabuchi ◽  
...  

Neuroligin is a postsynaptic cell-adhesion molecule that is involved in synapse formation and maturation by interacting with presynaptic neurexin. Mutations in neuroligin genes, including the arginine to cystein substitution at the 451st amino acid residue (R451C) of neuroligin-3 (NLGN3), have been identified in patients with autism spectrum disorder (ASD). Functional magnetic resonance imaging and examination of post-mortem brain in ASD patients implicate alteration of cerebellar morphology and Purkinje cell (PC) loss. In the present study, we examined possible association between the R451C mutation in NLGN3 and synaptic development and function in the mouse cerebellum. In NLGN3-R451C mutant mice, the expression of NLGN3 protein in the cerebellum was reduced to about 10% of the level of wild-type mice. Elimination of redundant climbing fiber (CF) to PC synapses was impaired from postnatal day 10–15 (P10–15) in NLGN3-R451C mutant mice, but majority of PCs became mono-innervated as in wild-type mice after P16. In NLGN3-R451C mutant mice, selective strengthening of a single CF relative to the other CFs in each PC was impaired from P16, which persisted into juvenile stage. Furthermore, the inhibition to excitation (I/E) balance of synaptic inputs to PCs was elevated, and calcium transients in the soma induced by strong and weak CF inputs were reduced in NLGN3-R451C mutant mice. These results suggest that a single point mutation in NLGN3 significantly influences the synapse development and refinement in cerebellar circuitry, which might be related to the pathogenesis of ASD.


2021 ◽  
Author(s):  
Michelle Bridi ◽  
Nancy Luo ◽  
Grace Kim ◽  
Caroline O'Ferrall ◽  
Ruchit Oatel ◽  
...  

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder involving sensory processing abnormalities. Alterations to the balance between excitation and inhibition (E/I ratio) are postulated to underlie behavioral phenotypes in ASD patients and mouse models. However, in primary visual cortex (V1) of wild type mice, the E/I ratio is not a fixed value, but rather oscillates across the 24h day. Therefore, we hypothesized that the E/I oscillation, rather than the overall E/I ratio, may be disrupted in ASD mouse models. To this end, we measured the E/I ratio in Fmr1 KO and BTBR mice, models of syndromic and idiopathic ASD, respectively. We found that the E/I ratio is dysregulated in both models, but in different ways: the oscillation is flattened in Fmr1 KO and phase-shifted in BTBR mice. These phenotypes cannot be explained by altered sleep timing, which was largely normal in both lines. Furthermore, we found that E/I dysregulation occurs due to alterations in both excitatory and inhibitory synaptic transmission in both models. These findings provide a crucial perspective on the E/I ratio in ASD, suggesting that ASD phenotypes may be produced by a mismatch of E/I to the appropriate behavioral state, rather than alterations to overall E/I levels per se.


Sign in / Sign up

Export Citation Format

Share Document