scholarly journals IgY antibodies against Ebola virus possess post-exposure protection and excellent thermostability

Author(s):  
Yuan Zhang ◽  
Yanqiu Wei ◽  
Yunlong Li ◽  
Xuan Wang ◽  
Yang Liu ◽  
...  

AbstractEbola virus (EBOV) is the most virulent pathogens that cause hemorrhagic fever with high mortality rates in humans and nonhuman primates. The postexposure antibody therapies to prevent EBOV infection are considered efficient. However, due to the poor thermal stability of mammalian antibody, their application in the tropics has been limited. Here, we developed a thermostable therapeutic antibody against EBOV based on chicken immunoglobulin Y (IgY). The IgY antibodies demonstrated excellent thermal stability, which retained their neutralizing activity at 25°C for one year, in contrast to conventional polyclonal or monoclonal antibodies (MAbs). We immunized laying hens with a variety of EBOV vaccine candidates and confirmed that VSV Δ G/EBOVGP encoding the EBOV glycoprotein could induce high titer neutralizing antibodies against EBOV. The therapeutic efficacy of immune IgY antibodies in vivo was evaluated in the newborn Balb/c mice model. Lethal dose of virus challenged mice were treated 2 or 24 h post-infection with different doses of anti-EBOV IgY. The group receiving a high dose of 106 NAU/kg (neutralizing antibody units/kilogram) achieved complete protection with no signs of disease, while the low-dose group was only partially protected. In contrast, all mice receiving naïve IgY died within 10 days. In conclusion, the anti-EBOV IgY exhibits excellent thermostability and protective efficacy, and it is very promising to be developed as alternative therapeutic entities.Author SummaryAlthough several Ebola virus therapeutic antibodies have been reported in recent years, however, due to the poor thermal stability of mammalian antibody, their application in tropical endemic areas has been limited. We developed a highly thermostable therapeutic antibody against EBOV based on chicken immunoglobulin Y (IgY). The IgY antibodies demonstrated excellent thermal stability, which retained their neutralizing activity at 25°C for one year. The newborn mice receiving passive transfer of IgY achieved complete protection against a lethal dose of virus challenge indicating that the anti-EBOV IgY provides a promising countermeasure to solve the current clinical application problems of Ebola antibody-based treatments in Africa.

2021 ◽  
Vol 15 (3) ◽  
pp. e0008403
Author(s):  
Yuan Zhang ◽  
Yanqiu Wei ◽  
Yunlong Li ◽  
Xuan Wang ◽  
Yang Liu ◽  
...  

Ebola virus (EBOV) is one of the most virulent pathogens that causes hemorrhagic fever and displays high mortality rates and low prognosis rates in both humans and nonhuman primates. The post-exposure antibody therapies to prevent EBOV infection are considered effective as of yet. However, owing to the poor thermal stability of mammalian antibodies, their application in the tropics has remained limited. Therefore, a thermostable therapeutic antibody against EBOV was developed modelled on the poultry(chicken) immunoglobulin Y (IgY). The IgY antibodies retaining their neutralising activity at 25°C for one year, displayed excellent thermal stability, opposed to conventional polyclonal antibodies (pAbs) or monoclonal antibodies (mAbs). Laying hens were immunised with a variety of EBOV vaccine candidates and it was confirmed that VSVΔG/EBOVGP encoding the EBOV glycoprotein could induce high titer neutralising antibodies against EBOV. The therapeutic efficacy of immune IgY antibodies in vivo was evaluated in the newborn Balb/c mice who have been challenged with the VSVΔG/EBOVGP model. Mice that have been challenged with a lethal dose of the pseudovirus were treated 2 or 24 h post-infection with different doses of anti-EBOV IgY. The group receiving a high dose of 106 NAU/kg (neutralising antibody units/kilogram) showed complete protection with no symptoms of a disease, while the low-dose group was only partially protected. Conversely, all mice receiving naive IgY died within 10 days. In conclusion, the anti-EBOV IgY exhibits excellent thermostability and protective efficacy. Anti-EBOV IgY shows a lot of promise in entering the realm of efficient Ebola virus treatment regimens.


Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


2012 ◽  
Vol 512-515 ◽  
pp. 1018-1021
Author(s):  
Xu Fei Zhu ◽  
Long Fei Jiang ◽  
Wei Xing Qi ◽  
Chao Lu ◽  
Ye Song

To overcome the risk of electrolyte leakage and the shortcoming of higher impedance at high frequencies for the conventional aluminum electrolytic capacitor impregnated with electrolyte solutions, solid aluminum electrolytic capacitor employing conducting polyaniline (PANI) as a counter electrode was developed. The as-fabricated solid capacitors have very low impedances at high frequencies and excellent thermal stability. The superior performances can be ascribed to high conductivity and good thermal stability of the camphorsulfonic acid (CSA)-dodecylbenzenesulfonic acid (DBSA) co-doped PANI.


2011 ◽  
Vol 196 (7) ◽  
pp. 3669-3672 ◽  
Author(s):  
M. Vijayakumar ◽  
Liyu Li ◽  
Gordon Graff ◽  
Jun Liu ◽  
Huamin Zhang ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (41) ◽  
pp. 2807-2813 ◽  
Author(s):  
Atasi Dan ◽  
Kamanio Chattopadhyay ◽  
Harish C. Barshilia ◽  
Bikramjit Basu

AbstractThe solar absorptance property of W/WAlN/WAlON/Al2O3-based coatings, deposited by DC/RF magnetron sputtering on stainless steel substrate was studied by measuring the reflectance spectra in the wavelength range of 250 - 2500 nm. The effect of thermal annealing on the optical properties of the solar selective absorber coatings was investigated. Annealing the coatings at 450°C for 150 hrs in air did not show any significant change in the spectral properties of the absorber coating indicating the excellent thermal stability of the coating. The W layer acts as infrared reflective layer and diffusion barrier on stainless steel substrate. The top Al2O3 layer serves as dense shield to protect the under layers from oxidation in air. In summary, the present study indicates the potential application of W/WAlN/WAlON/Al2O3-based selective coatings in high temperature photo thermal conversion systems.


2011 ◽  
Vol 374-377 ◽  
pp. 1426-1429
Author(s):  
Xiao Meng Guo ◽  
Jian Qiang Li ◽  
Xian Sen Zeng ◽  
De Dao Hong

In this study, the thermal properties of a kind of new geotextile materials, so called controlled permeable formwork (CPF), were studied. Thermo-gravimetric analysis showed that the weight of CPF didn’t change much between 0~350 °C. Dynamic mechanical analysis showed that the storage modulus of CPF reduced from 25 MPa to around 10 MPa when the temperature rose to above 100 °C. The strength of sample decreased slightly with the increase of the temperature. The breaking elongation changed slightly with a maximum at 80 °C. The CPF showed excellent thermal stability and was suitable for general use in construction work.


Sign in / Sign up

Export Citation Format

Share Document