scholarly journals Atypical B cells are a normal component of immune responses to vaccination and infection in humans

2020 ◽  
Author(s):  
Henry J. Sutton ◽  
Racheal Aye ◽  
Azza H. Idris ◽  
Rachel Vistein ◽  
Eunice Nduati ◽  
...  

AbstractThe full diversity of the circulating human B cell compartment is unknown. Flow cytometry analysis suggests that in addition to naïve and memory B cells, there exists a population of CD11c+, CD27− CD21− “atypical” B cells, that are associated with chronic or recurrent infection and autoimmunity. We used single cell RNA-seq approaches to examine the diversity of both antigen-specific B cells and total B cells in healthy subjects and individuals naturally-exposed to recurrent malaria infections. This analysis revealed two B cell lineages: a classical lineage of activated and resting memory B cells, and an atypical-like lineage. Surprisingly, the atypical lineage was common in both malaria exposed individuals and non-exposed healthy controls. Using barcoded antibodies in conjunction with our transcriptomic data, we found that atypical lineage cells in healthy individuals lack many atypical B markers and thus represent an undercounted cryptic population. We further determined using antigen specific probes that atypical cells can be induced by primary vaccination in humans and can be recalled upon boosting. Collectively these data suggest that atypical cells are not necessarily pathogenic but can be a normal component of B responses to antigen.

2013 ◽  
Vol 210 (12) ◽  
pp. 2739-2753 ◽  
Author(s):  
Elissa K. Deenick ◽  
Danielle T. Avery ◽  
Anna Chan ◽  
Lucinda J. Berglund ◽  
Megan L. Ives ◽  
...  

Long-lived antibody memory is mediated by the combined effects of long-lived plasma cells (PCs) and memory B cells generated in response to T cell–dependent antigens (Ags). IL-10 and IL-21 can activate multiple signaling pathways, including STAT1, STAT3, and STAT5; ERK; PI3K/Akt, and potently promote human B cell differentiation. We previously showed that loss-of-function mutations in STAT3, but not STAT1, abrogate IL-10– and IL-21–mediated differentiation of human naive B cells into plasmablasts. We report here that, in contrast to naive B cells, STAT3-deficient memory B cells responded to these STAT3-activating cytokines, differentiating into plasmablasts and secreting high levels of IgM, IgG, and IgA, as well as Ag-specific IgG. This was associated with the induction of the molecular machinery necessary for PC formation. Mutations in IL21R, however, abolished IL-21–induced responses of both naive and memory human B cells and compromised memory B cell formation in vivo. These findings reveal a key role for IL-21R/STAT3 signaling in regulating human B cell function. Furthermore, our results indicate that the threshold of STAT3 activation required for differentiation is lower in memory compared with naive B cells, thereby identifying an intrinsic difference in the mechanism underlying differentiation of naive versus memory B cells.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Lauren E. Williamson ◽  
Andrew I. Flyak ◽  
Nurgun Kose ◽  
Robin Bombardi ◽  
Andre Branchizio ◽  
...  

ABSTRACT The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates. IMPORTANCE The pathogenesis of Ebola virus disease (EVD) in humans is complex, and the mechanisms contributing to immunity are poorly understood. In particular, it appears that the quality and magnitude of the human B cell response early after recovery from EVD may be reduced compared to most viral infections. Here, we isolated human monoclonal antibodies from B cells of four survivors of EVD at 1 or 3 months after hospital discharge. Ebola-specific memory B cells early in convalescence were low in frequency, and the antibodies they encoded demonstrated poor neutralizing potencies. One neutralizing antibody that protected mice from lethal infection, EBOV237, was identified in the panel of 25 human antibodies isolated. Recognition of the glycan cap epitope recognized by EBOV237 suggests that this antigenic site should be considered in vaccine design and treatment strategies for EVD.


Author(s):  
Sarah Wilmore ◽  
Karly-Rai Rogers-Broadway ◽  
Joe Taylor ◽  
Elizabeth Lemm ◽  
Rachel Fell ◽  
...  

AbstractSignaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


2021 ◽  
Author(s):  
Jun Li ◽  
Yurong Pan ◽  
Qingqing Ma ◽  
Long Ma ◽  
Bin Shi ◽  
...  

Abstract Background Colonization of gut microorganism is related to maturation of B cells in peripheral immune organs. This study aims to investigate the effect of intestinal microflora in Germ-free (GF), Specific Pathogen-free (SPF) and Clean (CL) BALB/C mice to small intestine total B-cell and memory B-cell receptor (BCR) complementary-determining region 3 (CDR3) repertoire. Results The composition and characteristics of intestinal microflora were analyzed by 16S rDNA sequencing. Genomic DNA extracted from small intestine tissue and memory B-cells of GF, SPF and CL mice were conducted via high-throughput DNA sequencing methods. As expected, significant differences of gut microflora diversity were observed in the three mice groups. CL group showed the most diversity, followed by SPF group, and GF group had the lowest diversity. Moreover, anormogenesis of intestinal lymphoid tissue were observed in GF mice. Diversity of the BCR heavy chain CDR3 repertoire in memory B cells were significant difference among three groups, but not in total B cells. The nucleotide polymorphism, usage frequency of gene segments (V, D, J, V–J gene segments) and amino acid of total B cells and memory B cells CDR3 were comparable among three mice groups, and there was significant difference between CL and GF mice groups. Conclusions The results of this study advocate that the colonization of intestinal microorganisms affect the diversity of B cells CDR3 repertoire. Elucidating mechanism of microbiome participated in the function of intestinal mucosal immune system may have positive effects on human health, and it requires further investigation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emily E. Radke ◽  
Zhi Li ◽  
David N. Hernandez ◽  
Hanane El Bannoudi ◽  
Sergei L. Kosakovsky Pond ◽  
...  

Staphylococcus aureus, a common cause of serious and often fatal infections, is well-armed with secreted factors that disarm host immune defenses. Highly expressed in vivo during infection, Staphylococcal protein A (SpA) is reported to also contribute to nasal colonization that can be a prelude to invasive infection. Co-evolution with the host immune system has provided SpA with an Fc-antibody binding site, and a Fab-binding site responsible for non-immune superantigen interactions via germline-encoded surfaces expressed on many human BCRs. We wondered whether the recurrent exposures to S. aureus commonly experienced by adults, result in the accumulation of memory B-cell responses to other determinants on SpA. We therefore isolated SpA-specific class-switched memory B cells, and characterized their encoding VH : VL antibody genes. In SpA-reactive memory B cells, we confirmed a striking bias in usage for VH genes, which retain the surface that mediates the SpA-superantigen interaction. We postulate these interactions reflect co-evolution of the host immune system and SpA, which during infection results in immune recruitment of an extraordinarily high prevalence of B cells in the repertoire that subverts the augmentation of protective defenses. Herein, we provide the first evidence that human memory responses are supplemented by B-cell clones, and circulating-antibodies, that bind to SpA determinants independent of the non-immune Fc- and Fab-binding sites. In parallel, we demonstrate that healthy individuals, and patients recovering from S. aureus infection, both have circulating antibodies with these conventional binding specificities. These findings rationalize the potential utility of incorporating specially engineered SpA proteins into a protective vaccine.


2000 ◽  
Vol 191 (6) ◽  
pp. 1031-1044 ◽  
Author(s):  
Sarah L. Pogue ◽  
Christopher C. Goodnow

Conserved differences between the transmembrane and cytoplasmic domains of membrane immunoglobulin (Ig)M and IgG may alter the function of antigen receptors on naive versus memory B cells. Here, we compare the ability of these domains to signal B cell allelic exclusion and maturation in transgenic mice. A lysozyme-binding antibody was expressed in parallel sets of mice as IgM, IgG1, or a chimeric receptor with IgM extracellular domains and transmembrane/cytoplasmic domains of IgG1. Like IgM, the IgG1 or chimeric IgM/G receptors triggered heavy chain allelic exclusion and supported development of mature CD21+ B cells. Many of the IgG or IgM/G B cells became CD21high and downregulated their IgG and IgM/G receptors spontaneously, resembling memory B cells and B cells with mutations that exaggerate B cell antigen receptor signaling. Unlike IgM-transgenic mice, “edited” B cells that carry non–hen egg lysozyme binding receptors preferentially accumulated in IgG and IgM/G mice. This was most extreme in lines with the highest transgene copy number and diminished in variant offspring with fewer copies. The sensitivity of B cell maturation to transgene copy number conferred by the IgG transmembrane and cytoplasmic domains may explain the diverse phenotypes found in other IgG-transgenic mouse strains and may reflect exaggerated signaling.


Sign in / Sign up

Export Citation Format

Share Document