Identification of ADAMTS19 as a novel retinal factor involved in ocular growth regulation

2020 ◽  
Author(s):  
Swanand Koli ◽  
Cassandre Labelle-Dumais ◽  
Yin Zhao ◽  
Seyyedhassan Paylakhi ◽  
K Saidas Nair

ABSTRACTRefractive errors are the most common ocular disorders and are a leading cause of visual impairment worldwide. Although ocular axial length is well established to be a major determinant of refractive errors, the molecular and cellular processes regulating ocular axial growth are poorly understood. Mutations in genes encoding the PRSS56 and MFRP are a major cause of nanophthalmos. Accordingly, mouse models with mutations in the genes encoding the retinal factor PRSS56 or MFRP, a gene predominantly localized in the retinal pigment epithelial (RPE) exhibit ocular axial length reduction and extreme hyperopia. However, the precise mechanisms underlying PRSS56- and MFRP-mediated ocular axial growth remain elusive. Here, we show that Adamts19 expression is significantly upregulated in retina of mice lacking either Prss56 or Mfrp. Using a combination of genetic approaches and mouse models, we show that while ADAMTS19 is not required for ocular growth during normal development, its inactivation exacerbates ocular axial length reduction in both Prss56 or Mfrp mutant mice. These results suggest that the upregulation of retinal Adamts19 expression is part of an adaptive molecular response to counteract impaired ocular growth. Using a complementary genetic approach. We further demonstrate that loss of PRSS56 or MFRP function prevents excessive ocular axial growth in a mouse model of developmental myopia caused by a null mutation in Irpb, demonstrating that ocular axial elongation in Irbp-/- mice is fully dependent on PRSS56 and MFRP functions. Collectively, our findings provide insight into the molecular network involved in ocular axial growth regulation and refractive development and support the notion that relay of the signal between the retina and RPE could be critical for promoting ocular axial elongation.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009458
Author(s):  
Swanand Koli ◽  
Cassandre Labelle-Dumais ◽  
Yin Zhao ◽  
Seyyedhassan Paylakhi ◽  
K. Saidas Nair

Precise regulation of ocular size is a critical determinant of normal visual acuity. Although it is generally accepted that ocular growth relies on a cascade of signaling events transmitted from the retina to the sclera, the factors and mechanism(s) involved are poorly understood. Recent studies have highlighted the importance of the retinal secreted serine protease PRSS56 and transmembrane glycoprotein MFRP, a factor predominantly expressed in the retinal pigment epithelium (RPE), in ocular size determination. Mutations in PRSS56 and MFRP constitute a major cause of nanophthalmos, a condition characterized by severe reduction in ocular axial length/extreme hyperopia. Interestingly, common variants of these genes have been implicated in myopia, a condition associated with ocular elongation. Consistent with these findings, mice with loss of function mutation in PRSS56 or MFRP exhibit a reduction in ocular axial length. However, the molecular network and cellular processes involved in PRSS56- and MFRP-mediated ocular axial growth remain elusive. Here, we show that Adamts19 expression is significantly upregulated in the retina of mice lacking either Prss56 or Mfrp. Importantly, using genetic mouse models, we demonstrate that while ADAMTS19 is not required for ocular growth during normal development, its inactivation exacerbates ocular axial length reduction in Prss56 and Mfrp mutant mice. These results suggest that the upregulation of retinal Adamts19 is part of an adaptive molecular response to counteract impaired ocular growth. Using a complementary genetic approach, we show that loss of PRSS56 or MFRP function prevents excessive ocular axial growth in a mouse model of early-onset myopia caused by a null mutation in Irbp, thus, demonstrating that PRSS56 and MFRP are also required for pathological ocular elongation. Collectively, our findings provide new insights into the molecular network involved in ocular axial growth and support a role for molecular crosstalk between the retina and RPE involved in refractive development.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii295-iii295
Author(s):  
Annette Wu ◽  
Tak Mak ◽  
Jerome Fortin

Abstract Diffuse midline gliomas (DMGs) are aggressive childhood brain tumors with a dismal prognosis. Most of these tumors carry K27M mutations in histone H3-encoding genes, particularly H3F3A and HIST1H3B. In addition, activating mutations in ACVR1 and PIK3CA co-occur in a subset of DMGs. To understand how these lesions drive the development of DMGs, we generated genetically engineered mouse models in which Acvr1G328V, Hist1h3bK27M, and Pik3caH1047R are targeted to the OLIG2-expressing cell lineage. Animals carrying Acvr1G328V and Pik3caH1047R, with (“AHPO”) or without (“APO”) Hist1h3bK27M, developed high-grade diffuse gliomas involving midline and forebrain regions. Neither Acvr1G328V nor Pik3caH1047R drove tumorigenesis by themselves, but Acvr1G328V was sufficient to cause oligodendroglial differentiation arrest, pointing to a role in the earliest stages of gliomas formation. Transcriptomic analyses of AHPO and APO tumors indicated a predominantly proneural and oligodendrocyte precursor-like gene expression signature, consistent with the corresponding human pathology. Genes encoding transcription factors (TFs) with dual roles in controlling glial and neuronal differentiation were upregulated in tumors. Some of these genes were mildly induced by Acvr1G328V alone. Functional experiments using CRISPR/Cas9-mediated gene editing in patient-derived cell lines confirmed a role for some of these TFs in controlling DMG cell fitness. Overall, our results suggest that Pik3caH1047R consolidates Acvr1G328V-induced glial differentiation arrest to drive DMG development and progression.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Wang ◽  
Kang Zhuang ◽  
Lei Gao ◽  
Linna Zhang ◽  
Hongling Yang

Visual environment plays an important role in the occurrence of myopia. We previously showed that the different flashing lights could result in distinct effects on the ocular growth and development of myopia. CCN2 has been reported to regulate various cellular functions and biological processes. However, whether CCN2 signaling was involved in the red flashing light-induced myopia still remains unknown. In the present study, we investigated the effects of the red flashing lights exposure on the refraction and axial length of the eyesin vivoand then evaluated their effects on the expression of CCN2 and TGF-βin sclera tissues. Our data showed that the eyes exposed to the red flashing light became more myopic with a significant increase of the axial length and decrease of the refraction. Both CCN2 and TGF-β, as well as p38 MAPK and PI3K, were highly expressed in the sclera tissues exposed to the red flashing light. Both CCN2 and TGF-βwere found to have the same gene expression profilein vivo. In conclusion, our findings found that CCN2 signaling pathway plays an important role in the red flashing light-induced myopiain vivo. Moreover, our study establishes a useful animal model for experimental myopia research.


2020 ◽  
Vol 13 (4) ◽  
pp. 111-114
Author(s):  
Abdur Rahman Mohammad Alam ◽  
Md. Sanwar Hossain ◽  
Md. Shafiqul Islam

This study was conducted to observe the effect of atropine in retarding myopia progression and axial length growth in 36 myopic children (atropine group, 24; control, 12). The initial spherical equivalent of the atropine group and control group was -3.0 ± 1.6 dioptre and -3.5 ± 1.6 dioptre respectively. At the 12th month in atropine group, it was -2.9 ± 2.6 dioptre and -4.6 ± 1.9 dioptre in the control group. The power of the atropine group reduced but rose in the control group after 12 months. There was a statistically significant difference in final refractive errors between the two groups (p<0.05). The initial axial length of the atropine group and control group was 24.3± 1.0 mm and 24.6 ± 1.1 mm respectively. In 12th month, the changes in axial length in the two groups was insignificant. However, the mean axial length progression at 12 months of the atropine group was -0.1 ± 0.1 mm and it was lower than the control group which was -0.2 ± 0.2 mm, and this was statistically significant (p<0.05). In conclusion, topical atropine (0.01%) retarded myopia progre-ssion and axial length growth in myopic children.    


2018 ◽  
Vol 3 (1) ◽  
pp. e000204 ◽  
Author(s):  
Kin Wan ◽  
Sin Wan Cheung ◽  
James S Wolffsohn ◽  
Janis B Orr ◽  
Pauline Cho

ObjectiveTo determine the characteristics of children who were likely to progress rapidly and gain the greatest benefit from orthokeratology (ortho-k) treatment.Methods and analysisThe files of 113 children who participated in two myopia control studies and wore either ortho-k lenses (n=62) or single-vision spectacles (SVS) (n=51) were reviewed. Baseline cycloplegic subjective refraction, central corneal thickness, axial length, keratometry, intraocular pressure, corneal biomechanical properties and 24-month axial length data were retrieved and analysed.ResultsMultivariate analysis showed that there was significant negative correlation between axial elongation and baseline age and corneal hysteresis (p<0.05) in the SVS group. In the ortho-k group, only baseline age was significantly and negatively associated with axial elongation (p<0.01).ConclusionCorneal biomechanical properties and baseline age can predict the rate of axial elongation in myopic children. It may be beneficial for younger myopic children with low corneal hysteresis to commence ortho-k treatment as early as possible.


2009 ◽  
Vol 77 (12) ◽  
pp. 5291-5299 ◽  
Author(s):  
Francisco A. Uzal ◽  
Juliann Saputo ◽  
Sameera Sayeed ◽  
Jorge E. Vidal ◽  
Derek J. Fisher ◽  
...  

ABSTRACT Clostridium perfringens type C isolates cause enterotoxemias and enteritis in humans and livestock. While the major disease signs and lesions of type C disease are usually attributed to beta toxin (CPB), these bacteria typically produce several different lethal toxins. Since understanding of disease pathogenesis and development of improved vaccines is hindered by the lack of small animal models mimicking the lethality caused by type C isolates, in this study we developed two mouse models of C. perfringens type C-induced lethality. When inoculated into BALB/c mice by intragastric gavage, 7 of 14 type C isolates were lethal, whereas when inoculated intraduodenally, these strains were all lethal in these mice. Clinical signs in intragastrically and intraduodenally challenged mice were similar and included respiratory distress, abdominal distension, and neurological alterations. At necropsy, the small, and occasionally the large, intestine was dilated and gas filled in most mice developing a clinical response. Histological changes in the gut were relatively mild, consisting of attenuation of the mucosa with villus blunting. Inactivation of the CPB-encoding gene rendered the highly virulent type C strain CN3685 avirulent in the intragastric model and nearly nonlethal in the intraduodenal model. In contrast, inactivation of the genes encoding alpha toxin and perfringolysin O only slightly decreased the lethality of CN3685. Mice could be protected against lethality by intravenous passive immunization with a CPB antibody prior to intragastric challenge. This study proves that CPB is a major contributor to the systemic effects of type C infections and provides new mouse models for investigating the pathogenesis of type C-induced lethality.


Sign in / Sign up

Export Citation Format

Share Document