scholarly journals Aster repulsion drives local ordering in an active system

2020 ◽  
Author(s):  
Jorge de-Carvalho ◽  
Sham Tlili ◽  
Lars Hufnagel ◽  
Timothy E. Saunders ◽  
Ivo A. Telley

AbstractBiological systems are a form of active matter, which often undergo rapid changes in their material state, e.g. liquid to solid transitions. Yet, such systems often also display remarkably ordered structures. It remains an open question as to how local ordering occurs within active systems. Here, we utilise the rapid early development of Drosophila melanogaster embryos to uncover the mechanisms driving short-ranged order. During syncytial stage, nuclei synchronously divide (within a single cell defined by the ellipsoidal eggshell) for nine cycles after which most of the nuclei reach the cell cortex. Despite the rapid nuclear division and repositioning, the spatial pattern of nuclei at the cortex is highly regular. Such precision is important for subsequent cellularisation and morphological transformations. We utilise ex vivo explants and mutant embryos to reveal that microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. For large networks of nuclei, such as in the embryo, we predict – and experimentally verify – the formation of force chains. The ex vivo extracts enabled us to deduce the force potential between single asters. We use this to predict how the nuclear division axis orientation in small ex vivo systems depend on aster number. Finally, we demonstrate that, upon nucleus removal from the cortex, microtubule force potentials can reorient subsequent nuclear divisions to minimise the size of pattern defects. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters can drive ordering within an active system.

Development ◽  
2022 ◽  
Author(s):  
Jorge de-Carvalho ◽  
Sham Tlili ◽  
Lars Hufnagel ◽  
Timothy E. Saunders ◽  
Ivo A. Telley

Biological systems are highly complex, yet notably ordered structures can emerge. During syncytial stage development of the Drosophila melanogaster embryo, nuclei synchronously divide for nine cycles within a single cell, after which most of the nuclei reach the cell cortex. The arrival of nuclei to the cortex occurs with remarkable positional order, which is important for subsequent cellularisation and morphological transformations. Yet, the mechanical principles underlying this lattice-like positional order of nuclei remain untested. Here, utilising quantification of nuclei position and division orientation together with embryo explants we show that short-ranged repulsive interactions between microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. Such ordered nuclear positioning still occurs with the loss of actin caps and even the loss of the nuclei themselves; the asters can self-organise with similar distribution to nuclei in the wild-type embryo. The explant assay enabled us to deduce the nature of the mechanical interaction between pairs of nuclei. We used this to predict how the nuclear division axis orientation changes upon nucleus removal from the embryo cortex, which we confirmed in vivo with laser ablation. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters are important for ordering in the early Drosophila embryo and minimising positional irregularity.


2021 ◽  
Author(s):  
Jason A Tarkington ◽  
Hao Zhang ◽  
Ricardo Azevedo ◽  
Rebecca Zufall

Understanding the mechanisms that generate genetic variation, and thus contribute to the process of adaptation, is a major goal of evolutionary biology. Mutation and genetic exchange have been well studied as mechanisms to generate genetic variation. However, there are additional processes that may also generate substantial genetic variation in some populations and the extent to which these variation generating mechanisms are themselves shaped by natural selection is still an open question. Tetrahymena thermophila is a ciliate with an unusual mechanism of nuclear division, called amitosis, which can generate genetic variation among the asexual descendants of a newly produced sexual progeny. We hypothesize that amitosis thus increases the evolvability of newly produced sexual progeny relative to species that undergo mitosis. To test this hypothesis, we used experimental evolution and simulations to compare the rate of adaptation in T. thermophila populations founded by a single sexual progeny to parental populations that had not had sex in many generations. The populations founded by a sexual progeny adapted more quickly than parental populations in both laboratory populations and simulated populations. This suggests that the additional genetic variation generated by amitosis of a heterozygote can increase the rate of adaptation following sex and may help explain the evolutionary success of the unusual genetic architecture of Tetrahymena and ciliates more generally.


2011 ◽  
Vol 195 (4) ◽  
pp. 553-562 ◽  
Author(s):  
Ana Carmena ◽  
Aljona Makarova ◽  
Stephan Speicher

A crucial first step in asymmetric cell division is to establish an axis of cell polarity along which the mitotic spindle aligns. Drosophila melanogaster neural stem cells, called neuroblasts (NBs), divide asymmetrically through intrinsic polarity cues, which regulate spindle orientation and cortical polarity. In this paper, we show that the Ras-like small guanosine triphosphatase Rap1 signals through the Ral guanine nucleotide exchange factor Rgl and the PDZ protein Canoe (Cno; AF-6/Afadin in vertebrates) to modulate the NB division axis and its apicobasal cortical polarity. Rap1 is slightly enriched at the apical pole of metaphase/anaphase NBs and was found in a complex with atypical protein kinase C and Par6 in vivo. Loss of function and gain of function of Rap1, Rgl, and Ral proteins disrupt the mitotic axis orientation, the localization of Cno and Mushroom body defect, and the localization of cell fate determinants. We propose that the Rap1–Rgl–Ral signaling network is a novel mechanism that cooperates with other intrinsic polarity cues to modulate asymmetric NB division.


2002 ◽  
Vol 13 (8) ◽  
pp. 2747-2759 ◽  
Author(s):  
Dong-Hyun Roh ◽  
Blair Bowers ◽  
Martin Schmidt ◽  
Enrico Cabib

Actomyosin ring contraction and chitin primary septum deposition are interdependent processes in cell division of budding yeast. By fusing Myo1p, as representative of the contractile ring, and Chs2p for the primary septum, to different fluorescent proteins we show herein that the two processes proceed essentially at the same location and simultaneously. Chs2p differs from Myo1p in that it reflects the changes in shape of the plasma membrane to which it is attached and in that it is packed after its action into visible endocytic vesicles for its disposal. To ascertain whether this highly coordinated system could function independently of other cell cycle events, we reexamined the septum-like structures made by the septin mutant cdc3 at various sites on the cell cortex at the nonpermissive temperature. With the fluorescent fusion proteins mentioned above, we observed that incdc3 at 37°C both Myo1p and Chs2p colocalize at different spots of the cell cortex. A contraction of the Myo1p patch could also be detected, as well as that of a Chs2p patch, with subsequent appearance of vesicles. Furthermore, the septin Cdc12p, fused with yellow or cyan fluorescent protein, also colocalized with Myo1p and Chs2p at the aberrant locations. The formation of delocalized septa did not require nuclear division. We conclude that the septation apparatus, composed of septins, contractile ring, and the chitin synthase II system, can function at ectopic locations autonomously and independently of cell division, and that it can recruit the other elements necessary for the formation of secondary septa.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Ojas Deshpande ◽  
Jorge de-Carvalho ◽  
Diana V. Vieira ◽  
Ivo A. Telley

The early insect embryo develops as a multinucleated cell distributing the genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing. Contemporary hypotheses propose actomyosin-driven cytoplasmic movement transporting nuclei or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule cross-linking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance in Drosophila. Germline knockdown causes irregular, less-dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-inhibited embryos, following micromanipulation-assisted repositioning. A dimerization-deficient Feo abolishes nuclear separation in embryo explants, while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A cross-linking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.


2020 ◽  
Vol 13 (620) ◽  
pp. eaax9940 ◽  
Author(s):  
Ouranio Anastasiou ◽  
Rania Hadjisavva ◽  
Paris A. Skourides

Correct selection of the cell division axis is important for cell differentiation, tissue and organ morphogenesis, and homeostasis. Both integrins, which mediate interactions with extracellular matrix (ECM) components such as fibronectin, and cadherins, which mediate interactions between cells, are implicated in the determination of spindle orientation. We found that both cadherin- and integrin-based adhesion resulted in cell divisions parallel to the attachment plane and elicited identical spindle responses to spatial adhesive cues. This suggests that adhesion topology provides purely mechanical spatial cues that are independent of the molecular nature of the interaction or signaling from adhesion complexes. We also demonstrated that cortical integrin activation was indispensable for correct spindle orientation on both cadherin and fibronectin substrates. These data suggest that spindle orientation responses to adhesion topology are primarily a result of force anisotropy on the cell cortex and show that integrins play a central role in this process that is distinct from their role in cell-ECM interactions.


2013 ◽  
Vol 200 (6) ◽  
pp. 773-787 ◽  
Author(s):  
Mei Zhu ◽  
Florian Settele ◽  
Sachin Kotak ◽  
Luis Sanchez-Pulido ◽  
Lena Ehret ◽  
...  

Precise positioning of the mitotic spindle determines the correct cell division axis and is crucial for organism development. Spindle positioning is mediated through a cortical machinery by capturing astral microtubules, thereby generating pushing/pulling forces at the cell cortex. However, the molecular link between these two structures remains elusive. Here we describe a previously uncharacterized protein, MISP (C19orf21), as a substrate of Plk1 that is required for correct mitotic spindle positioning. MISP is an actin-associated protein throughout the cell cycle. MISP depletion led to an impaired metaphase-to-anaphase transition, which depended on phosphorylation by Plk1. Loss of MISP induced mitotic defects including spindle misorientation accompanied by shortened astral microtubules. Furthermore, we find that MISP formed a complex with and regulated the cortical distribution of the +TIP binding protein p150glued, a subunit of the dynein–dynactin complex. We propose that Plk1 phosphorylates MISP, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning.


2021 ◽  
Author(s):  
Sebastian Hurst ◽  
Bart E. Vos ◽  
Timo Betz

The life and death of an organism depends largely on correct cell division. While the overall biochemical signaling and morphological processes during mitosis are well understood, the importance of mechanical forces and material properties is only just starting to be discovered. Recent studies of global cell stiffening during cell division may imply an understanding of the cytosol mechanics that is mistaken. Here we show that in contrast to the stiffening process in the cell cortex, the interior of the cell undergoes a softening and fluidification that is accompanied by a decrease of active forces driving particle mobility. Using optical tweezers-based microrheology we capture the complex active and passive material state of the cytoplasm using only six relevant parameters. We demonstrate that the softening occurs because of a surprising role switch between microtubules and actin, where the intracellular, actin-based mechanics is largely controlled by a formin-mediated network.


2019 ◽  
Author(s):  
Ojas Deshpande ◽  
Jorge de-Carvalho ◽  
Diana V. Vieira ◽  
Ivo A. Telley

AbstractThe early insect embryo develops as a multinucleated cell distributing genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing to date. Contemporary hypotheses propose actomyosin driven cytoplasmic movement transporting nuclei, or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule crosslinking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance. Germline knockdown causes irregular, less dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-depleted embryos, following micromanipulation assisted repositioning. A dimerization deficient Feo abolishes nuclear separation in embryo explants while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A crosslinking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.


1997 ◽  
Vol 161 ◽  
pp. 203-218 ◽  
Author(s):  
Tobias C. Owen

AbstractThe clear evidence of water erosion on the surface of Mars suggests an early climate much more clement than the present one. Using a model for the origin of inner planet atmospheres by icy planetesimal impact, it is possible to reconstruct the original volatile inventory on Mars, starting from the thin atmosphere we observe today. Evidence for cometary impact can be found in the present abundances and isotope ratios of gases in the atmosphere and in SNC meteorites. If we invoke impact erosion to account for the present excess of129Xe, we predict an early inventory equivalent to at least 7.5 bars of CO2. This reservoir of volatiles is adequate to produce a substantial greenhouse effect, provided there is some small addition of SO2(volcanoes) or reduced gases (cometary impact). Thus it seems likely that conditions on early Mars were suitable for the origin of life – biogenic elements and liquid water were present at favorable conditions of pressure and temperature. Whether life began on Mars remains an open question, receiving hints of a positive answer from recent work on one of the Martian meteorites. The implications for habitable zones around other stars include the need to have rocky planets with sufficient mass to preserve atmospheres in the face of intensive early bombardment.


Sign in / Sign up

Export Citation Format

Share Document