scholarly journals Impact of trimethoprim on the river microbiome and antimicrobial resistance

2020 ◽  
Author(s):  
J. Delaney ◽  
S. Raguideau ◽  
J. Holden ◽  
L. Zhang ◽  
H.J. Tipper ◽  
...  

Recent evidence suggests that anthropogenic activity can increase the levels of antimicrobial resistance (AMR) in the environment. Rivers and waterways are significant examples of environmental settings that have become repositories of antibiotics and antibiotic resistance genes (ARGs). Our recent study quantified drug concentrations in freshwater samples taken at a range of sites located on the Thames catchment; the highest levels of antibiotics and other drugs were recorded downstream of waste water treatment plants (WWTPs). One specific antibiotic: Trimethoprim (TMP) was shown at elevated concentrations reaching 2000ng/L at particular sites. We have also shown a correlative relationship between the residue of TMP and the prevalence of sulfonamide antibiotic resistance genes such as sul1. Despite this, there is still no evidence of a causative relationship between TMP concentrations and the prevalence of the ARGs at river sites. The aim of the current study was to conduct in-depth analysis using a combination of large metagenomic, geospatial and chemical datasets, in order to conduct a comparison between those sites with the highest TMP and lowest TMP levels across the Thames catchment. We aimed to establish the proximity of these sites to WWTPs, their population equivalence (PE) and land coverage. A secondary aim was to investigate seasonal variation in TMP and ARGs. Exploring these factors will help to decipher the clinical relevance of ARG accumulation at river sites. A significant correlation was shown between TMP levels at river sites and their distance downstream from a WWTP. Three sites located on the Rivers Cut and Ray showed significantly higher TMP concentrations in winter compared to summer. The population equivalence (PE) for sites with the highest TMP levels was significantly higher than those with the lowest levels. The land coverage of sites with the highest TMP levels was significantly more urban/suburban than sites with the lowest TMP concentrations, which were found to be significantly more arable. Five ARGs relevant to TMP and sulfonamides were identified across the Thames catchment. The most prevalent ARG was sul1, which was significantly more prevalent in winter compared to summer. By contrast sul2 was found to be significantly more prevalent in summer compared to winter at a site on the River Coln. The prevalence of the class 1 integron marker gene (inti1) did not differ significantly by season or between sites with the highest/lowest TMP levels.

2017 ◽  
Vol 62 (No. 3) ◽  
pp. 169-177 ◽  
Author(s):  
TH Chung ◽  
SW Yi ◽  
BS Kim ◽  
WI Kim ◽  
GW Shin

The present study sought to identify pathogens associated with septicaemia in the Chinese soft-shelled turtle (Pelodiscus sinensis) and to characterise antibiotic resistance in these pathogens. Twenty-three isolates recovered from the livers of diseased soft-shelled turtles were genetically identified as Aeromonas hydrophila (n = 8), A. veronii (n = 3), Citrobacter freundii (n = 4), Morganella morganii (n = 3), Edwardsiella tarda (n = 2), Wohlfahrtiimonas chitiniclastica (n = 1), Chryseobacterium sp. (n = 1), and Comamonas sp. (n = 1). Most isolates (n = 21) were resistant to ampicillin whereas a low percentage of isolates was susceptible to aminoglycosides (amikacin, gentamicin, and tobramycin). PCR assays and sequence analysis revealed the presence of the qnrS2 and bla<sub>TEM</sub> antibiotic resistance genes in all isolates. The bla<sub>DHA-1</sub>, bla<sub>CTX-M-14</sub> and bla<sub>CMY-2</sub> genes were harboured by 17.4% (n = 4), 13.5% (n = 3) and 8.7% (n = 2) of the strains, respectively. One or more tetracycline resistance genes were detected in 60.9% (n = 14) of the isolates. Four isolates (17.4%) harboured single or multiple class 1 integron cassettes. Collectively, a variety of bacterial pathogens were involved in the occurrence of septicaemia in Chinese soft-shelled turtles and most of the isolates had multi-antibiotic resistant phenotypes. To our knowledge, the present report is the first to identify W. chitiniclastica and Comamonas sp. as causes of septicaemia in soft-shelled turtles and the first to identify Aeromonas spp. with bla<sub>CTX-M-14</sub> and bla<sub>DHA-1</sub> resistance genes.


2019 ◽  
Author(s):  
Sanjeet Kumar ◽  
Kanika Bansal ◽  
Prashant P. Patil ◽  
Amandeep Kaur ◽  
Satinder Kaur ◽  
...  

ABSTRACTWe report first complete genome sequence and analysis of an extreme drug resistance (XDR) nosocomial Stenotrophomonas maltophilia that is resistant to the mainstream drugs i.e. trimethoprim/sulfamethoxazole (TMP/SXT) and levofloxacin. Taxonogenomic analysis revealed it to be a novel genomospecies of the Stenotrophomonas maltophilia complex (Smc). Comprehensive genomic investigation revealed fourteen dynamic regions (DRs) exclusive to SM866, consisting of diverse antibiotic resistance genes, efflux pumps, heavy metal resistance, various transcriptional regulators etc. Further, resistome analysis of Smc clearly depicted SM866 to be an enriched strain, having diversified resistome consisting of sul1 and sul2 genes. Interestingly, SM866 does not have any plasmid but it harbors two diverse super-integrons of chromosomal origin. Apart from genes for sulfonamide resistance (sul1 and sul2), both of these integrons harbor an array of antibiotic resistance genes linked to ISCR (IS91-like elements common regions) elements. These integrons also harbor genes encoding resistance to commonly used disinfectants like quaternary ammonium compounds and heavy metals like mercury. Hence, isolation of a novel strain belonging to a novel sequence type (ST) and genomospecies with diverse array of resistance from a tertiary care unit of India indicates extent and nature of selection pressure driving XDRs in hospital settings. There is an urgent need to employ complete genome based investigation using emerging technologies for tracking emergence of XDR at the global level and designing strategies of sanitization and antibiotic regime.Impact StatementThe hospital settings in India have one of the highest usage of antimicrobials and heavy patient load. Our finding of a novel clinical isolate of S. maltophilia complex with two super-integrons harbouring array of antibiotic resistance genes along with antimicrobials resistance genes indicates the extent and the nature of selection pressures in action. Further, the presence of ISCR type of transposable elements on both integrons not only indicates its propensity to transfer resistome but also their chromosomal origin suggests possibilities for further genomic/phenotypic complexities. Such complex cassettes and strain are potential threat to global health care. Hence, there is an urgent need to employ cost-effective long read technologies to keep vigilance on novel and extreme antimicrobial resistance pathogens in populous countries. There is also need for surveillance for usage of antimicrobials for hygiene and linked/rapid co-evolution of extreme drug resistance in nosocomial pathogens. Our finding of the chromosomal encoding XDR will shed a light on the need of hour to understand the evolution of an opportunistic nosocomial pathogen belonging to S. maltophilia.RepositoriesComplete genome sequence of Stenotrophomonas maltophilia SM866: CP031058


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 450 ◽  
Author(s):  
Ocean Thakali ◽  
Sarmila Tandukar ◽  
John Brooks ◽  
Samendra Sherchan ◽  
Jeevan Sherchand ◽  
...  

Urban rivers affected by anthropogenic activities can act as reservoirs of antibiotic resistance genes (ARGs). This study aimed to describe the occurrence of selected ARGs (blaTEM, ermF, mecA, and tetA) and a class 1 integron (intI1) in an urban river in Nepal. A total of 18 water samples were collected periodically from upstream, midstream, and downstream sites along the Bagmati River over a 1-year period. All ARGs except mecA and intI1 were consistently detected by a quantitative polymerase chain reaction in the midstream and downstream sites, with concentrations ranging from 3.1 to 7.8 log copies/mL. ARG abundance was significantly lower at the upstream site (p < 0.05), reflecting the impact of anthropogenic activities on increasing concentrations of ARGs at midstream and downstream sites. Our findings demonstrate the presence of clinically relevant ARGs in the urban river water of Nepal, suggesting a need for mitigating strategies to prevent the spread of antibiotic resistance in the environment.


2020 ◽  
Vol 11 ◽  
Author(s):  
Masaki Shintani ◽  
Eman Nour ◽  
Tarek Elsayed ◽  
Khald Blau ◽  
Inessa Wall ◽  
...  

IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1β, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Susan M. Joseph ◽  
Thomas Battaglia ◽  
Julia M. Maritz ◽  
Jane M. Carlton ◽  
Martin J. Blaser

ABSTRACT Bacterial resistance to antibiotics is a pressing health issue around the world, not only in health care settings but also in the community and environment, particularly in crowded urban populations. The aim of our work was to characterize the microbial populations in sewage and the spread of antibiotic resistance within New York City (NYC). Here, we investigated the structure of the microbiome and the prevalence of antibiotic resistance genes in raw sewage samples collected from the fourteen NYC Department of Environmental Protection wastewater treatment plants, distributed across the five NYC boroughs. Sewage, a direct output of anthropogenic activity and a reservoir of microbes, provides an ecological niche to examine the spread of antibiotic resistance. Taxonomic diversity analysis revealed a largely similar and stable bacterial population structure across all the samples, which was found to be similar over three time points in an annual cycle, as well as in the five NYC boroughs. All samples were positive for the presence of the seven antibiotic resistance genes tested, based on real-time quantitative PCR assays, with higher levels observed for tetracycline resistance genes at all time points. For five of the seven genes, abundances were significantly higher in May than in February and August. This study provides characteristics of the NYC sewage resistome in the context of the overall bacterial populations. IMPORTANCE Urban sewage or wastewater is a diverse source of bacterial growth, as well as a hot spot for the development of environmental antibiotic resistance, which can in turn influence the health of the residents of the city. As part of a larger study to characterize the urban New York City microbial metagenome, we collected raw sewage samples representing three seasonal time points spanning the five boroughs of NYC and went on to characterize the microbiome and the presence of a range of antibiotic resistance genes. Through this study, we have established a baseline microbial population and antibiotic resistance abundance in NYC sewage which can prove to be very useful in studying the load of antibiotic usage, as well as for developing effective measures in antibiotic stewardship.


2019 ◽  
Vol 74 (6) ◽  
pp. 1484-1493 ◽  
Author(s):  
Happiness H Kumburu ◽  
Tolbert Sonda ◽  
Marco van Zwetselaar ◽  
Pimlapas Leekitcharoenphon ◽  
Oksana Lukjancenko ◽  
...  

2001 ◽  
Vol 67 (12) ◽  
pp. 5675-5682 ◽  
Author(s):  
Anja S. Schmidt ◽  
Morten S. Bruun ◽  
Inger Dalsgaard ◽  
Jens L. Larsen

ABSTRACT A collection of 313 motile aeromonads isolated at Danish rainbow trout farms was analyzed to identify some of the genes involved in high levels of antimicrobial resistance found in a previous field trial (A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, Appl. Environ. Microbiol. 66:4908–4915, 2000), the predominant resistance phenotype (37%) being a combined oxytetracycline (OTC) and sulphadiazine/trimethoprim resistance. Combined sulphonamide/trimethoprim resistance (135 isolates) appeared closely related to the presence of a class 1 integron (141 strains). Among the isolates containing integrons, four different combinations of integrated resistance gene cassettes occurred, in all cases including a dihydrofolate reductase gene and a downstream aminoglycoside resistance insert (87 isolates) and occasionally an additional chloramphenicol resistance gene cassette (31 isolates). In addition, 23 isolates had “empty” integrons without inserted gene cassettes. As far as OTC resistance was concerned, only 66 (30%) out of 216 resistant aeromonads could be assigned to resistance determinant class A (19 isolates), D (n = 6), or E (n = 39); three isolates contained two tetracycline resistance determinants (AD, AE, and DE). Forty OTC-resistant isolates containing large plasmids were selected as donors in a conjugation assay, 27 of which also contained a class 1 integron. Out of 17 successful R-plasmid transfers to Escherichia coli recipients, the respective integrons were cotransferred along with the tetracycline resistance determinants in 15 matings. Transconjugants were predominantly tetApositive (10 of 17) and contained class 1 integrons with two or more inserted antibiotic resistance genes. While there appeared to be a positive correlation between conjugative R-plasmids andtetA among the OTC-resistant aeromonads, tetEand the unclassified OTC resistance genes as well as class 1 integrons were equally distributed among isolates with and without plasmids. These findings indicate the implication of other mechanisms of gene transfer besides plasmid transfer in the dissemination of antibiotic resistance among environmental motile aeromonads.


2020 ◽  
Author(s):  
Robin B. Guevarra ◽  
Stefan Magez ◽  
Eveline Peeters ◽  
Mi Sook Chung ◽  
Kyung Hyun Kim ◽  
...  

AbstractPantoea agglomerans is a Gram-negative aerobic bacillus causing a wide range of opportunistic infections in humans including septicemia, pneumonia, septic arthritis, wound infections and meningitis. To date, the determinants of virulence, antibiotic resistance, metabolic features conferring survival and host-associated pathogenic potential of this bacterium remain largely underexplored. In this study, we sequenced and assembled the whole-genome of P. agglomerans KM1 isolated from kimchi in South Korea. The genome contained one circular chromosome of 4,039,945 bp, 3 mega plasmids, and 2 prophages. The phage-derived genes encoded integrase, lysozyme and terminase. Six CRISPR loci were identified within the bacterial chromosome. Further in-depth analysis showed that the genome contained 13 antibiotic resistance genes conferring resistance to clinically important antibiotics such as penicillin G, bacitracin, rifampicin, vancomycin, and fosfomycin. Genes involved in adaptations to environmental stress were also identified which included factors providing resistance to osmotic lysis, oxidative stress, as well as heat and cold shock. The genomic analysis of virulence factors led to identification of a type VI secretion system, hemolysin, filamentous hemagglutinin, and genes involved in iron uptake and sequestration. Finally, the data provided here show that, the KM1 isolate exerted strong immunostimulatory properties on RAW 264.7 macrophages in vitro. Stimulated cells produced Nitric Oxide (NO) and pro-inflammatory cytokines TNF-α, IL-6 and the anti-inflammatory cytokine IL-10. The upstream signaling for production of TNF-α, IL-6, IL-10, and NO depended on TLR4 and TLR1/2. While production of TNF-α, IL-6 and NO involved solely activation of the NF-κB, IL-10 secretion was largely dependent on NF-κB and to a lesser extent on MAPK Kinases. Taken together, the analysis of the whole-genome and immunostimulatory properties provided in-depth characterization of the P. agglomerans KM1 isolate shedding a new light on determinants of virulence that drive its interactions with the environment, other microorganisms and eukaryotic hosts.


Sign in / Sign up

Export Citation Format

Share Document