scholarly journals Viral-mediated ubiquitination impacts interactions of host proteins with viral RNA and promotes viral RNA processing

2020 ◽  
Author(s):  
Christin Herrmann ◽  
Joseph M. Dybas ◽  
Jennifer C. Liddle ◽  
Alexander M Price ◽  
Katharina E. Hayer ◽  
...  

ABSTRACTViruses promote infection by hijacking host ubiquitin machinery to counteract or redirect cellular processes. Adenovirus encodes two early proteins, E1B55K and E4orf6, that together co-opt a cellular ubiquitin ligase complex to overcome host defenses and promote virus production. Adenovirus mutants lacking E1B55K or E4orf6 display defects in viral RNA processing and protein production, but previously identified substrates of the redirected ligase do not explain these phenotypes. Here we used a quantitative proteomics approach to identify substrates of E1B55K/E4orf6-mediated ubiquitination that facilitate RNA processing. While all currently known cellular substrates of E1B55K/E4orf6 are degraded by the proteasome, we uncovered RNA-binding proteins (RBPs) as high-confidence substrates which are not decreased in overall abundance. We focused on two RBPs, RALY and hnRNP-C, which we confirm are ubiquitinated without degradation. Knockdown of RALY and hnRNP-C increased levels of viral RNA splicing, protein abundance, and progeny production during infection with E1B55K-deleted virus. Furthermore, infection with virus deleted for E1B55K resulted in increased interaction of hnRNP-C with viral RNA, and attenuation of viral RNA processing. These data suggest viral-mediated ubiquitination of RALY and hnRNP-C relieves a restriction on viral RNA processing, revealing an unexpected role for non-degradative ubiquitination in manipulation of cellular processes during virus infection.

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1110 ◽  
Author(s):  
Naoko Kajitani ◽  
Stefan Schwartz

Human papillomaviruses (HPVs) depend on the cellular RNA-processing machineries including alternative RNA splicing and polyadenylation to coordinate HPV gene expression. HPV RNA processing is controlled by cis-regulatory RNA elements and trans-regulatory factors since the HPV splice sites are suboptimal. The definition of HPV exons and introns may differ between individual HPV mRNA species and is complicated by the fact that many HPV protein-coding sequences overlap. The formation of HPV ribonucleoproteins consisting of HPV pre-mRNAs and multiple cellular RNA-binding proteins may result in the different outcomes of HPV gene expression, which contributes to the HPV life cycle progression and HPV-associated cancer development. In this review, we summarize the regulation of HPV16 gene expression at the level of RNA processing with focus on the interactions between HPV16 pre-mRNAs and cellular RNA-binding factors.


2018 ◽  
Vol 6 (3) ◽  
pp. 21 ◽  
Author(s):  
Eugenia Olesnicky ◽  
Ethan Wright

An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.


2021 ◽  
Author(s):  
Eun Seon Kim ◽  
Chang Geon Chung ◽  
Jeong Hyang Park ◽  
Byung Su Ko ◽  
Sung Soon Park ◽  
...  

Abstract RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP, Staufen, may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS—but not with mutated endogenous NLS—potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/−), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/− is protective. Stau+/− also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3306
Author(s):  
Aneri Shah ◽  
Jonathan A. Lindquist ◽  
Lars Rosendahl ◽  
Ingo Schmitz ◽  
Peter R. Mertens

YB-1 belongs to the evolutionarily conserved cold-shock domain protein family of RNA binding proteins. YB-1 is a well-known transcriptional and translational regulator, involved in cell cycle progression, DNA damage repair, RNA splicing, and stress responses. Cell stress occurs in many forms, e.g., radiation, hyperthermia, lipopolysaccharide (LPS) produced by bacteria, and interferons released in response to viral infection. Binding of the latter factors to their receptors induces kinase activation, which results in the phosphorylation of YB-1. These pathways also activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a well-known transcription factor. NF-κB is upregulated following cellular stress and orchestrates inflammatory responses, cell proliferation, and differentiation. Inflammation and cancer are known to share common mechanisms, such as the recruitment of infiltrating macrophages and development of an inflammatory microenvironment. Several recent papers elaborate the role of YB-1 in activating NF-κB and signaling cell survival. Depleting YB-1 may tip the balance from survival to enhanced apoptosis. Therefore, strategies that target YB-1 might be a viable therapeutic option to treat inflammatory diseases and improve tumor therapy.


1991 ◽  
Vol 11 (2) ◽  
pp. 894-905
Author(s):  
R A Voelker ◽  
W Gibson ◽  
J P Graves ◽  
J F Sterling ◽  
M T Eisenberg

The nucleotide sequence of the Drosophila melanogaster suppressor of sable [su(s)] gene has been determined. Comparison of genomic and cDNA sequences indicates that an approximately 7,860-nucleotide primary transcript is processed into an approximately 5-kb message, expressed during all stages of the life cycle, that contains an open reading frame capable of encoding a 1,322-amino-acid protein of approximately 150 kDa. The putative protein contains an RNA recognition motif-like region and a highly charged arginine-, lysine-, serine-, aspartic or glutamic acid-rich region that is similar to a region contained in several RNA-processing proteins. In vitro translation of in vitro-transcribed RNA from a complete cDNA yields a product whose size agrees with the size predicted by the open reading frame. Antisera against su(s) fusion proteins recognize the in vitro-translated protein and detect a protein of identical size in the nuclear fractions from tissue culture cells and embryos. The protein is also present in smaller amounts in cytoplasmic fractions of embryos. That the su(s) protein has regions similar in structure to RNA-processing protein is consistent with its known role in affecting the transcript levels of those alleles that it suppresses.


1994 ◽  
Vol 107 (6) ◽  
pp. 1457-1468 ◽  
Author(s):  
F. Puvion-Dutilleul ◽  
J.P. Bachellerie ◽  
N. Visa ◽  
E. Puvion

We have studied in HeLa cells at the electron microscope level the response to adenovirus infection of the RNA processing machinery. Components of the spliceosomes were localized by in situ hybridization with biotinylated U1 and U2 DNA probes and by immunolabeling with Y12 anti-Sm monoclonal antibody, whereas poly(A)+ RNAs were localized by specific binding of biotinylated poly(dT) probe. At early stages of nuclear transformation, the distribution of small nuclear RNPs was similar to that previously described in non-infected nuclei (Visa, N., Puvion-Dutilleul, F., Bachellerie, J.P. and Puvion, E., Eur. J. Cell Biol. 60, 308–321, 1993; Visa, N., Puvion-Dutilleul, F., Harper, F., Bachellerie, J. P. and Puvion, E., Exp. Cell Res. 208, 19–34, 1993). As the infection progresses, the large virus-induced inclusion body consists of a central storage site of functionally inactive viral genomes surrounded by a peripheral shell formed by clusters of interchromatin granules, compact rings and a fibrillogranular network in which are embedded the viral single-stranded DNA accumulation sites. Spliceosome components and poly(A)+ RNAs were then exclusively detected over the clusters of interchromatin granules and the fibrillogranular network whereas the viral single-stranded DNA accumulation sites and compact rings remained unlabeled, thus appearing to not be directly involved in splicing. Our data, therefore, suggest that the fibrillogranular network, in addition to being the site of viral transcription, is also a major site of viral RNA splicing. Like the clusters of interchromatin granules, which had been already involved in spliceosome assembly, they could also have a role in the sorting of viral spliced polyadenylated mRNAs before export to the cytoplasm. The compact rings, which contain non-polyadenylated viral RNA, might accumulate the non-used portions of the viral transcripts resulting from differential poly(A)+ site selection.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1475
Author(s):  
Veronica Ruta ◽  
Vittoria Pagliarini ◽  
Claudio Sette

Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.


Author(s):  
Fiona Haward ◽  
Magdalena M. Maslon ◽  
Patricia L. Yeyati ◽  
Nicolas Bellora ◽  
Jan N. Hansen ◽  
...  

AbstractShuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.


1999 ◽  
Vol 73 (1) ◽  
pp. 474-481 ◽  
Author(s):  
Tilman Heise ◽  
Luca G. Guidotti ◽  
Victoria J. Cavanaugh ◽  
Francis V. Chisari

ABSTRACT Hepatitis B virus (HBV) gene expression is downregulated in the liver of HBV transgenic mice by a posttranscriptional mechanism that is triggered by the local production of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) during intrahepatic inflammation (hepatitis). The molecular basis for this antiviral effect is unknown. In this study, we identified three HBV RNA-binding liver nuclear proteins (p45, p39, and p26) the relative abundance of which correlates with the abundance of HBV RNA in response to the induction of IFN-γ and TNF-α. All three proteins bind to a 91-bp element located at the 5′ end of a previously defined posttranscriptional regulatory element that is thought to mediate the nuclear export of HBV RNA. The presence of p45 correlates directly with the presence of HBV RNA, being detectable under baseline conditions when the viral RNA is abundant and undetectable when the viral RNA disappears in response to IFN-γ and TNF-α. In contrast, p26 is inversely related to HBV RNA, being detectable only when the viral RNA disappears following cytokine activation. Finally, p39 is constitutively expressed, and its abundance and mobility appear to be slightly increased by cytokine activation. These results suggest a model in which hepatocellular HBV RNA content might be controlled by the stabilizing and/or destabilizing influences of these RNA-binding proteins whose activity is regulated by cytokine-induced signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document