scholarly journals At-home self-collection of saliva, oropharyngeal swabs and dried blood spots for SARS-CoV-2 diagnosis and serology: post-collection acceptability of specimen collection process and patient confidence in specimens

Author(s):  
Mariah Valentine-Graves ◽  
Eric Hall ◽  
Jodie Guest ◽  
Elizabeth Adam ◽  
Rachel Valencia ◽  
...  

AbstractBackgroundOptions to increase the ease of testing for SARS-CoV-2 infection and immune response are needed. Self-collection of diagnostic specimens at home offers an avenue to allow people to test for SARS-CoV-2 infection or immune response without traveling to a clinic or laboratory. Before this study, survey respondents indicated willingness to self-collect specimens for COVID-related tests, but hypothetical willingness can differ from post-collection acceptability after participants collect specimens.Methods153 US adults were enrolled in a study of the willingness and feasibility of patients to self-collect three diagnostic specimens (saliva, oropharyngeal swab (OPS) and dried blood spot (DBS) card) while observed by a clinician through a telehealth session. After the specimens were collected, 148 participants participated in a survey about the acceptability of the collection, packing and shipping process, and their confidence in the samples collected for COVID-related laboratory testing.ResultsA large majority of participants (>84%) reported that collecting, packing and shipping of saliva, OPS, and DBS specimens were acceptable. Nearly nine in 10 (87%) reported being confident or very confident that the specimens they collected were sufficient for laboratory analysis. There were no differences in acceptability for any specimen type, packing and shipping, or confidence in samples by gender, age, race/ethnicity, or educational level.ConclusionsSelf-collection of specimens for SARS-CoV-2 testing and preparing and shipping specimens for analysis were acceptable in a diverse group of US adults. Further refinement of materials and instructions to support self-collection of saliva, OPS and DBS specimens for COVID-related testing is needed.Trial registrationNo intervention was tested in this study

10.2196/19471 ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. e19471 ◽  
Author(s):  
Eric William Hall ◽  
Nicole Luisi ◽  
Maria Zlotorzynska ◽  
Gretchen Wilde ◽  
Patrick Sullivan ◽  
...  

Background Innovative laboratory testing approaches for SARS-CoV-2 infection and immune response are needed to conduct research to establish estimates of prevalence and incidence. Self-specimen collection methods have been successfully used in HIV and sexually transmitted infection research and can provide a feasible opportunity to scale up SARS-CoV-2 testing for research purposes. Objective The aim of this study was to assess the willingness of adults to use different specimen collection modalities for themselves and children as part of a COVID-19 research study. Methods Between March 27 and April 1, 2020, we recruited 1435 adults aged 18 years or older though social media advertisements. Participants completed a survey that included 5-point Likert scale items stating how willing they were to use the following specimen collection testing modalities as part of a research study: home collection of a saliva sample, home collection of a throat swab, home finger-prick blood collection, drive-through site throat swab, clinic throat swab, and clinic blood collection. Additionally, participants indicated how the availability of home-based collection methods would impact their willingness to participate compared to drive-through and clinic-based specimen collection. We used Kruskal-Wallis tests and Spearman rank correlations to assess if willingness to use each testing modality differed by demographic variables and characteristics of interest. We compared the overall willingness to use each testing modality and estimated effect sizes with Cohen d. Results We analyzed responses from 1435 participants with a median age of 40.0 (SD=18.2) years and over half of which were female (761/1435, 53.0%). Most participants agreed or strongly agreed that they would be willing to use specimens self-collected at home to participate in research, including willingness to collect a saliva sample (1259/1435, 87.7%) or a throat swab (1191/1435, 83.1%). Willingness to collect a throat swab sample was lower in both a drive-through setting (64%) and clinic setting (53%). Overall, 69.0% (990/1435) of participants said they would be more likely to participate in a research study if they could provide a saliva sample or throat swab at home compared to going to a drive-through site; only 4.4% (63/1435) of participants said they would be less likely to participate using self-collected samples. For each specimen collection modality, willingness to collect specimens from children for research was lower than willingness to use on oneself, but the ranked order of modalities was similar. Conclusions Most participants were willing to participate in a COVID-19 research study that involves laboratory testing; however, there was a strong preference for home specimen collection procedures over drive-through or clinic-based testing. To increase participation and minimize bias, epidemiologic research studies of SARS-CoV-2 infection and immune response should consider home specimen collection methods.


PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0236775 ◽  
Author(s):  
Mariah Valentine-Graves ◽  
Eric Hall ◽  
Jodie Lynn Guest ◽  
Elizabeth Adam ◽  
Rachel Valencia ◽  
...  

Author(s):  
Eric William Hall ◽  
Nicole Luisi ◽  
Maria Zlotorzynska ◽  
Gretchen Wilde ◽  
Patrick Sullivan ◽  
...  

BACKGROUND Innovative laboratory testing approaches for SARS-CoV-2 infection and immune response are needed to conduct research to establish estimates of prevalence and incidence. Self-specimen collection methods have been successfully used in HIV and sexually transmitted infection research and can provide a feasible opportunity to scale up SARS-CoV-2 testing for research purposes. OBJECTIVE The aim of this study was to assess the willingness of adults to use different specimen collection modalities for themselves and children as part of a COVID-19 research study. METHODS Between March 27 and April 1, 2020, we recruited 1435 adults aged 18 years or older though social media advertisements. Participants completed a survey that included 5-point Likert scale items stating how willing they were to use the following specimen collection testing modalities as part of a research study: home collection of a saliva sample, home collection of a throat swab, home finger-prick blood collection, drive-through site throat swab, clinic throat swab, and clinic blood collection. Additionally, participants indicated how the availability of home-based collection methods would impact their willingness to participate compared to drive-through and clinic-based specimen collection. We used Kruskal-Wallis tests and Spearman rank correlations to assess if willingness to use each testing modality differed by demographic variables and characteristics of interest. We compared the overall willingness to use each testing modality and estimated effect sizes with Cohen <i>d</i>. RESULTS We analyzed responses from 1435 participants with a median age of 40.0 (SD=18.2) years and over half of which were female (761/1435, 53.0%). Most participants agreed or strongly agreed that they would be willing to use specimens self-collected at home to participate in research, including willingness to collect a saliva sample (1259/1435, 87.7%) or a throat swab (1191/1435, 83.1%). Willingness to collect a throat swab sample was lower in both a drive-through setting (64%) and clinic setting (53%). Overall, 69.0% (990/1435) of participants said they would be more likely to participate in a research study if they could provide a saliva sample or throat swab at home compared to going to a drive-through site; only 4.4% (63/1435) of participants said they would be less likely to participate using self-collected samples. For each specimen collection modality, willingness to collect specimens from children for research was lower than willingness to use on oneself, but the ranked order of modalities was similar. CONCLUSIONS Most participants were willing to participate in a COVID-19 research study that involves laboratory testing; however, there was a strong preference for home specimen collection procedures over drive-through or clinic-based testing. To increase participation and minimize bias, epidemiologic research studies of SARS-CoV-2 infection and immune response should consider home specimen collection methods.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Niclas Roxhed ◽  
Annika Bendes ◽  
Matilda Dale ◽  
Cecilia Mattsson ◽  
Leo Hanke ◽  
...  

AbstractSerological testing is essential to curb the consequences of the COVID-19 pandemic. However, most assays are still limited to single analytes and samples collected within healthcare. Thus, we establish a multianalyte and multiplexed approach to reliably profile IgG and IgM levels against several versions of SARS-CoV-2 proteins (S, RBD, N) in home-sampled dried blood spots (DBS). We analyse DBS collected during spring of 2020 from 878 random and undiagnosed individuals from the population in Stockholm, Sweden, and use classification approaches to estimate an accumulated seroprevalence of 12.5% (95% CI: 10.3%–14.7%). This includes 5.4% of the samples being IgG+IgM+ against several SARS-CoV-2 proteins, as well as 2.1% being IgG−IgM+ and 5.0% being IgG+IgM− for the virus’ S protein. Subjects classified as IgG+ for several SARS-CoV-2 proteins report influenza-like symptoms more frequently than those being IgG+ for only the S protein (OR = 6.1; p < 0.001). Among all seropositive cases, 30% are asymptomatic. Our strategy enables an accurate individual-level and multiplexed assessment of antibodies in home-sampled blood, assisting our understanding about the undiagnosed seroprevalence and diversity of the immune response against the coronavirus.


Author(s):  
Nick Verougstraete ◽  
Bruno Lapauw ◽  
Sara Van Aken ◽  
Joris Delanghe ◽  
Christophe Stove ◽  
...  

AbstractBackground:Microsampling techniques have several advantages over traditional blood collection. Dried blood spot (DBS) sampling and blood collection with heparinized capillaries are the standard techniques. Volumetric absorptive microsampling (VAMS) is a novel technique that collects a fixed volume of blood by applying an absorbent tip to a blood drop. In the present study we explored the feasibility of HbAMethods:Diabetic patients were enrolled in this study during consultation with the endocrinologist. A venous (adults) or capillary (children) sample was taken for immediate HbAResults:The median time between sampling at home and analysis was 3 days. Results of HbAConclusions:Utilizing equipment standard available in the clinical laboratory, the use of home-sampled dried VAMS and DBS is not a reliable tool for the monitoring of HbA


2018 ◽  
Vol 10 (24) ◽  
pp. 2901-2909 ◽  
Author(s):  
Jessica D. Schulz ◽  
Anna Neodo ◽  
Jean T. Coulibaly ◽  
Jennifer Keiser

Ivermectin was quantified in dried blood spot and plasma samples derived fromTrichuris trichiura-infected adults with a validated LC-MS/MS method.


1994 ◽  
Vol 40 (3) ◽  
pp. 448-453 ◽  
Author(s):  
C M Worthman ◽  
J F Stallings

Abstract We describe direct immunofluorometric assays for luteinizing hormone (hLH) and follicle-stimulating hormone (hFSH) in fingerstick blood spots dried on filter paper, based on modifications of commercially available kits. Determinations are made from 2.5-mm-diameter discs (3 microL of dried blood) punched out from blood spot standards and samples. Sample dose detection limits of the assays (IU/L) are 0.26 for LH and 0.13 for FSH, with mean interassay CVs of 11.6% (LH) and 7.8% (FSH) at low concentrations. Analytical recoveries of added hormone averaged 100% for LH and 95% for FSH. Clinical studies showed that values for blood spots (x) and directly assayed plasma (y) are highly correlated, so that results from blood spots can be converted directly to plasma equivalents, as follows: yLH = 0.07 + 1.90 xLH, and yFSH = 0.424 + 2.207 xFSH. These gonadotropins are stable in blood spots for at least a year under refrigeration; LH for at least 8 weeks and FSH 6 weeks at 22 degrees C; and both hormones for a week at 37 degrees C. These methods thus allow self-sampling, serial sampling, and mailing of specimens.


Diagnosis ◽  
2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Adrian Klak ◽  
Steven Pauwels ◽  
Pieter Vermeersch

Abstract Background Dried blood spots (DBSs) could allow patients to prepare their own samples at home and send them to the laboratory for therapeutic drug monitoring (TDM) of immunosuppressants. The purpose of this review is to provide an overview of the current knowledge about the impact of DBS-related preanalytical factors on TDM of tacrolimus, sirolimus and everolimus. Content Blood spot volume, blood spot inhomogeneity, stability of analytes in DBS and hematocrit (Hct) effects are considered important DBS-related preanalytical factors. In addition, the influence of drying time has recently been identified as a noteworthy preanalytical factor. Tacrolimus is not significantly influenced by these factors. Sirolimus and everolimus are more prone to heat degradation and exhibited variations in recovery which were dependent on Hct and drying time. Summary and outlook DBS-related preanalytical factors can have a significant impact on TDM for immunosuppressants. Tacrolimus is not significantly influenced by the studied preanalytical factors and is a viable candidate for DBS sampling. For sirolimus and everolimus more validation of preanalytical factors is needed. In particular, drying conditions need to be examined further, as current protocols may mask Hct-dependent effects on recovery. Further validation is also necessary for home-based self-sampling of immunosuppressants as the sampling quality is variable.


Metabolites ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 82 ◽  
Author(s):  
Kefeng Li ◽  
Jane C. Naviaux ◽  
Jonathan M. Monk ◽  
Lin Wang ◽  
Robert K. Naviaux

Dried blood spots (DBS) have proven to be a powerful sampling and storage method for newborn screening and many other applications. However, DBS methods have not yet been optimized for broad-spectrum targeted metabolomic analysis. In this study, we developed a robust, DBS-based, broad-spectrum, targeted metabolomic method that was able to measure over 400 metabolites from a 6.3 mm punch from standard Whatman 903TM filter paper cards. The effects of blood spot volumes, hematocrit, vacutainer chemistry, extraction methods, carryover, and comparability with plasma and fingerstick capillary blood samples were analyzed. The stability of over 400 metabolites stored under varying conditions over one year was also tested. No significant impacts of blood volume and hematocrit variations were observed when the spotted blood volume was over 60 µL and the hematocrit was between 31% and 50%. The median area under the curve (AUC) of metabolites in the DBS metabolome declined by 40% in the first 3 months and then did not decline further for at least 1 year. All originally detectable metabolites remained within detectable limits. The optimal storage conditions for metabolomic analysis were −80 °C with desiccants and without an O2 scavenger. The method was clinically validated for its potential utility in the diagnosis of the mitochondrial disease mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Our method provides a convenient alternative to freezing, storing, and shipping liquid blood samples for comparative metabolomic studies.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1760-1760
Author(s):  
David Nieman ◽  
Arnoud Groen ◽  
Artyom Pugachev ◽  
Andrew Simonson ◽  
Kristine Polley ◽  
...  

Abstract Objectives Proteomics when combined with psychological, nutrition, and performance measures may serve as a useful monitoring system for immune dysfunction, training distress, and exercise-induced muscle damage and exhaustion in athletes. Global proteomics monitoring of an elite adventure athlete (age 33 years) was conducted over a 28-week period that culminated in the successful, unassisted 2-month trek across Antarctica (1500 km). Methods Training distress was monitored weekly using the 19-item, validated Training Distress Scale (TDS). Weekly dried blood spot (DBS) specimens were collected via fingerprick blood drops onto standard blood spot cards. DBS proteins were measured with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) in data-independent acquisition (DIA) mode, and 712 proteins were identified and quantified. Results The participant experienced a decrease of 11.4 kg in body mass during the Antarctica trek. The 28-week period was divided into time segments based on TDS scores, and a contrast analysis between weeks 5–8 (low TDS) and weeks 20–23 (high TDS, last month of Antarctica trek) showed that 31 proteins (n = 20 immune related, n = 14 nutrition related with n = 8 in dual roles) were upregulated and 35 (n = 17 immune related) were downregulated. Protein-protein interaction (PPI) networks and gene ontology (GO) biological process analysis supported an increase in plasma lipoprotein particle remodeling, regulation of lipid transport, retinoid metabolic process, and vitamin transport due to high energy intake (7048 kcal/d). PPI networks also supported a dichotomous immune response. GO terms for the upregulated immune proteins showed an increase in regulation of the immune system process, especially inflammation, complement activation, and leukocyte mediated immunity. GO terms for the downregulated immune-related proteins indicated a decrease in several aspects of the overall immune system process including neutrophil degranulation and the antimicrobial humoral response. Conclusions These proteomics data support a dysfunctional immune response in an elite adventure athlete during a sustained period of mental and physical distress, high energy intake, and significant loss of body mass while trekking solo across Antarctica. Funding Sources Standard Process, Inc., Palmyra, WI.


Sign in / Sign up

Export Citation Format

Share Document