scholarly journals Bacterial mobbing behavior: coordinated communal attack of Pseudomonas aeruginosa on a protozoan predator

2020 ◽  
Author(s):  
N. Shteindel ◽  
Y. Gerchman

Mobbing, a group attack of prey on predator, is a strategy enacted by many animal species. Here we report bacterial mobbing carried out by the bacterium Pseudomonas aeruginosa towards Acanthamoeba castellanii, a common bacterivore. This behavior consists of bacterial taxis towards the amoebae, adhesion en masse to amoebae cells, and eventual killing of the amoebae. Mobbing behavior transpires in second’s timescale and responds to predator population density. A mutant defective in the production of a specific quorum sensing signal displays reduced adhesion to amoeba cells. This deficiency ameliorated by external addition of the missing signal molecule. The same quorum sensing mutant also expresses long term deficiency in its ability to cause amoeba death and shows higher susceptibility to predation, highlighting the importance of group coordination to mobbing and predation avoidance. These findings portray bacterial mobbing as a regulated and dynamic group behavior.

Author(s):  
Nimrod Shteindel ◽  
Yoram Gerchman

Pseudomonas aeruginosa was shown previously to attack amoebae and other predators by adhering to them and injecting them with virulent substances. In this work, we show that an active, coordinated group behavior is enacted by the bacteria to utilize these molecular components, responding to both predator and bacterial population density.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Syed A. K. Shifat Ahmed ◽  
Michelle Rudden ◽  
Sabrina M. Elias ◽  
Thomas J. Smyth ◽  
Roger Marchant ◽  
...  

AbstractPseudomonas aeruginosa uses quorum sensing (QS) to modulate the expression of several virulence factors that enable it to establish severe infections. The QS system in P. aeruginosa is complex, intricate and is dominated by two main N-acyl-homoserine lactone circuits, LasRI and RhlRI. These two QS systems work in a hierarchical fashion with LasRI at the top, directly regulating RhlRI. Together these QS circuits regulate several virulence associated genes, metabolites, and enzymes in P. aeruginosa. Paradoxically, LasR mutants are frequently isolated from chronic P. aeruginosa infections, typically among cystic fibrosis (CF) patients. This suggests P. aeruginosa can undergo significant evolutionary pathoadaptation to persist in long term chronic infections. In contrast, mutations in the RhlRI system are less common. Here, we have isolated a clinical strain of P. aeruginosa from a CF patient that has deleted the transcriptional regulator RhlR entirely. Whole genome sequencing shows the rhlR locus is deleted in PA80 alongside a few non-synonymous mutations in virulence factors including protease lasA and rhamnolipid rhlA, rhlB, rhlC. Importantly we did not observe any mutations in the LasRI QS system. PA80 does not appear to have an accumulation of mutations typically associated with several hallmark pathoadaptive genes (i.e., mexT, mucA, algR, rpoN, exsS, ampR). Whole genome comparisons show that P. aeruginosa strain PA80 is closely related to the hypervirulent Liverpool epidemic strain (LES) LESB58. PA80 also contains several genomic islands (GI’s) encoding virulence and/or resistance determinants homologous to LESB58. To further understand the effect of these mutations in PA80 QS regulatory and virulence associated genes, we compared transcriptional expression of genes and phenotypic effects with isogenic mutants in the genetic reference strain PAO1. In PAO1, we show that deletion of rhlR has a much more significant impact on the expression of a wide range of virulence associated factors rather than deletion of lasR. In PA80, no QS regulatory genes were expressed, which we attribute to the inactivation of the RhlRI QS system by deletion of rhlR and mutation of rhlI. This study demonstrates that inactivation of the LasRI system does not impact RhlRI regulated virulence factors. PA80 has bypassed the common pathoadaptive mutations observed in LasR by targeting the RhlRI system. This suggests that RhlRI is a significant target for the long-term persistence of P. aeruginosa in chronic CF patients. This raises important questions in targeting QS systems for therapeutic interventions.


2004 ◽  
Vol 48 (9) ◽  
pp. 3457-3461 ◽  
Author(s):  
Yoshifumi Imamura ◽  
Katsunori Yanagihara ◽  
Yohei Mizuta ◽  
Masafumi Seki ◽  
Hideaki Ohno ◽  
...  

ABSTRACT The features of chronic airway diseases, including chronic bronchitis, cystic fibrosis, bronchiectasis, and diffuse panbronchiolitis, include chronic bacterial infection and airway obstruction by mucus. Pseudomonas aeruginosa is one of the most common pathogens in chronic lung infection, and quorum-sensing systems contribute to the pathogenesis of this disease. The quorum-sensing signal molecule [N-(3-oxododecanoyl) homoserine lactone (3O-C12-HSL)] not only regulates bacterial virulence but also is associated with the immune response. In this study, we investigated whether 3O-C12-HSL could stimulate the production of a major mucin core protein, MUC5AC. The effect of a macrolide on MUC5AC production was also studied. 3O-C12-HSL induced NCI-H292 cells to express MUC5AC at both the mRNA and the protein levels in time- and dose-dependent manners. A 15-membered macrolide, azithromycin, inhibited MUC5AC production that was activated by 3O-C12-HSL. 3O-C12-HSL induced extracellular signal-regulated kinase (ERK) 1/2 and I-κB phosphorylation in cells, and this induction was suppressed by azithromycin. 3O-C12-HSL-induced MUC5AC production was blocked by the ERK pathway inhibitor PD98059. Our findings suggest that the P. aeruginosa autoinducer 3O-C12-HSL contributes to excessive mucin production in chronic bacterial infection. Azithromycin seems to reduce this mucin production by interfering with intracellular signal transduction.


2021 ◽  
Author(s):  
Arunava Bandyopadhaya ◽  
Vijay K Singh ◽  
Arijit Chakraborty ◽  
A. Aria Tzika ◽  
Laurence G Rahme

AbstractMacrophages utilize metabolic pathways to generate energy and metabolites that may be vulnerable to pathogen hijacking to favor pathogen survival and persistence. It is unclear how bacterial pathogens alter metabolic pathways in immune cells for their benefit and persistence in the infected host. We have shown that the Pseudomonas aeruginosa quorum sensing (QS) signal molecule 2-aminoacetophenone (2-AA) allows pathogen persistence in host tissues by triggering host tolerization via histone deacetylase (HDAC)1-mediated epigenetic reprogramming. Here, we provide strong evidence that 2-AA-meditated persistence is linked to specific metabolic pathway alterations that reduce energy availability and biosynthetic macromolecules involved in host immune responses. 2-AA promotes a Warburg-like metabolic reprogramming effect, thereby increasing levels of lactate, which repressed inflammatory signaling in macrophages. Moreover, it interferes with pyruvate translocation to mitochondria, reducing mitochondrial (mt)-oxidative phosphorylation (OXPHOS) due to down-regulation of estrogen-regulated receptor (ERR)α and mitochondrial pyruvate carrier (MPC)-1. This metabolic reprogramming dampened energy production, reduced the acetyl-CoA pool, and generated an anti-inflammatory milieu that favors P. aeruginosa persistence. These findings provide evidence of first-in-class metabolic reprogramming in immune cells mediated by a QS signaling molecule. The specific metabolic programs affected provide insights that may guide the design and development of therapeutics and protective interventions against pathogen-induced immunometabolic alterations and persistence factors.


Author(s):  
Wai Leong ◽  
Carla Lutz ◽  
Jonathan Williams ◽  
Yan Hong Poh ◽  
Benny Yeo Ken Yee ◽  
...  

AbstractThe opportunistic pathogen, Pseudomonas aeruginosa, is ubiquitous in the environment, and in humans is capable of causing acute and chronic infections. P. aeruginosa, when co-incubated with the bacterivorous amoeba, Acanthamoeba castellanii, for extended periods, produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors, and this correlated with a reduction in expression of virulence traits. Virulence towards the nematode, Caenorhabditis elegans, was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early stage amoeba-adapted and non-adapted counterparts. Late-stage amoeba-adapted P. aeruginosa lost competitive fitness compared to non-adapted counterparts when grown in nutrient rich media. However, non-adapted P. aeruginosa were rapidly cleared by amoeba predation, whereas late-stage amoeba-adapted isolates remained in higher numbers 24 h after ingestion by amoeba. In addition, there was reduced uptake by macrophage of amoeba-adapted isolates and reduced uptake by human neutrophils as well as increased survival in the presence of neutrophils. Our findings indicate that the selection imposed by amoeba on P. aeruginosa resulted in reduced virulence over time. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to what is observed for isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures among host cell types.Author SummaryPseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans and also causes chronic infections in immune compromised and cystic fibrosis patients. This bacterium is commonly found in soils and water where bacteria are constantly under threat of being consumed by the bacterial predators, protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here we examined the effect of long-term predation on the genotype and phenotypes expressed by P. aeruginosa. We show that long-term co-incubation with protozoa resulted in mutations in the bacteria that made them less pathogenic. This is particularly interesting as we see similar mutations arise in bacteria associated with chronic infections. Thus, predation by protozoa and long term colonization of the human host may represent similar environments that select for similar losses in gene functions.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Niklas H. Ritzmann ◽  
Steffen L. Drees ◽  
Susanne Fetzner

ABSTRACT The multiple biological activities of 2-alkylquinolones (AQs) are crucial for virulence of Pseudomonas aeruginosa, conferring advantages during infection and in polymicrobial communities. Whereas 2-heptyl-3-hydroxyquinolin-4(1H)-one (the “Pseudomonas quinolone signal” [PQS]) is an important quorum sensing signal molecule, 2-alkyl-1-hydroxyquinolin-4(1H)-ones (also known as 2-alkyl-4-hydroxyquinoline N-oxides [AQNOs]) are antibiotics inhibiting respiration. Hydroxylation of the PQS precursor 2-heptylquinolin-4(1H)-one (HHQ) by the signal synthase PqsH boosts AQ quorum sensing. Remarkably, the same reaction, catalyzed by the ortholog AqdB, is used by Mycobacteroides abscessus to initiate degradation of AQs. The antibiotic 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO) is hydroxylated by Staphylococcus aureus to the less toxic derivative PQS-N-oxide (PQS-NO), a reaction probably also catalyzed by a PqsH/AqdB ortholog. In this study, we provide a comparative analysis of four AQ 3-monooxygenases of different organisms. Due to the major impact of AQ/AQNO 3-hydroxylation on the biological activities of the compounds, we surmised adaptations on the enzymatic and/or physiological level to serve either the producer or target organisms. Our results indicate that all enzymes share similar features and are incapable of discriminating between AQs and AQNOs. PQS-NO, hence, occurs as a native metabolite of P. aeruginosa although the unfavorable AQNO 3-hydroxylation is minimized by export as shown for HQNO, involving at least one multidrug efflux pump. Moreover, M. abscessus is capable of degrading the AQNO heterocycle by concerted action of AqdB and dioxygenase AqdC. However, S. aureus and M. abscessus orthologs disfavor AQNOs despite their higher toxicity, suggesting that catalytic constraints restrict evolutionary adaptation and lead to the preference of non-N-oxide substrates by AQ 3-monooxygenases. IMPORTANCE Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacteroides abscessus are major players in bacterial chronic infections and particularly common colonizers of cystic fibrosis (CF) lung tissue. Whereas S. aureus is an early onset pathogen in CF, P. aeruginosa establishes at later stages. M. abscessus occurs at all stages but has a lower epidemiological incidence. The dynamics of how these pathogens interact can affect survival and therapeutic success. 2-Alkylquinolone (AQ) and 2-alkylhydroxyquinoline N-oxide (AQNO) production is a major factor of P. aeruginosa virulence. The 3-position of the AQ scaffold is critical, both for attenuation of AQ toxicity or degradation by competitors, as well as for full unfolding of quorum sensing. Despite lacking signaling functionality, AQNOs have the strongest impact on suppression of Gram-positives. Because evidence for 3-hydroxylation of AQNOs has been reported, it is desirable to understand the extent by which AQ 3-monooxygenases contribute to manipulation of AQ/AQNO equilibrium, resistance, and degradation.


2021 ◽  
Author(s):  
Nicole E Smalley ◽  
Amy L Schaefer ◽  
Kyle L Asfahl ◽  
Crystal Perez ◽  
E Peter Greenberg ◽  
...  

The bacterium Pseudomonas aeruginosa is an opportunistic pathogen and it thrives in many different saprophytic habitats. In this bacterium acyl-homoserine lactone quorum sensing (QS) can activate expression of over 100 genes, many of which code for extracellular products. P. aeruginosa has become a model for studies of cell-cell communication and coordination of cooperative activities. We hypothesized that long-term growth of bacteria under conditions where only limited QS-controlled functions were required would result in a reduction in the size of the QS-controlled regulon. To test this hypothesis, we grew P. aeruginosa for about 1000 generations in a condition in which expression of QS-activated genes is required for growth. We compared the QS regulons of populations after about 35 generations to those after about 1000 generations in two independent lineages by using quorum quenching and RNA-seq technology. In one evolved lineage the number of QS-activated genes identified was reduced by about 70% and in the other by about 45%. Our results lend important insights about the variations in the number of QS-activated genes reported for different bacterial strains and, more broadly, about the environmental histories of P. aeruginosa.


2014 ◽  
Vol 80 (23) ◽  
pp. 7266-7274 ◽  
Author(s):  
Christine Müller ◽  
Franziska S. Birmes ◽  
Heiko Niewerth ◽  
Susanne Fetzner

ABSTRACTA bacterial strain, which based on the sequences of its 16S rRNA,gyrB,catA, andqsdAgenes, was identified as aRhodococcussp. closely related toRhodococcus erythropolis, was isolated from soil by enrichment on thePseudomonasquinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogenPseudomonas aeruginosa. The isolate, termedRhodococcussp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH ofP. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably,Rhodococcussp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite ofP. aeruginosato a quorum sensing signal molecule.


Sign in / Sign up

Export Citation Format

Share Document