scholarly journals Asymptomatic Genu Recurvatum Reshapes Lower Limb Sagittal Joint and Elevation Angles During Gait at Different Speeds

Author(s):  
Frederic Dierick ◽  
Celine Schreiber ◽  
Pauline Lavalee ◽  
Fabien Buisseret

Purpose: The main objective of this study is to characterize the lower limb sagittal joint and elevation angles during walking in participants with asymptomatic genu recurvatum and compare it with control participants without knee deformation. The secondary objective is to study the influence of walking speed on these kinematic variables. Methods: The spatio-temporal parameters and kinematics of the lower limb were recorded using an optoelectronic motion capture system in 26 participants (n = 13 with genu recurvatum and n = 13 controls). The participants walked on an instrumented treadmill during five minutes at three different speeds: slow, medium and fast. Results: Participants with genu recurvatum showed several significant differences with controls: a narrower step width, a greater maximum hip joint extension angle, a greater knee joint extension angle at mid stance, a lower maximum knee joint extension angle during the swing phase, and a greater ankle joint extension angle at the end of the gait cycle. Participants with genu recurvatum had a greater minimum thigh elevation angle, a greater maximum foot elevation angle, and a change in the orientation of the covariance plane. Walking speed had a significant effect on nearly all lower limb joint, elevation angle, and covariance plane parameters. Conclusion: Our findings show that genu recurvatum reshapes lower limb sagittal joint and elevation angles during walking at different speeds but preserves the covariation of elevation angles along a plane during both stance and swing phases and the rotation of this plane with increasing speed.

2019 ◽  
Vol 19 (06) ◽  
pp. 1950050
Author(s):  
M. T. KARIMI ◽  
R. B. TAHMASEBI ◽  
B. SATVATI ◽  
F. FATOYE

Flat foot is the most common foot disorder that influences the alignment of the lower limb structure. It is controversial whether the use of foot insole influences kinetic and kinematic of the leg or not. Therefore, this study investigated the influence of foot insole on the gait performance in subjects with flat foot disorder. A group of flat foot subject was recruited into this study (the number of subjects was 15). The motion of the leg joints was determined using the Qualysis motion analysis system. Moreover, the force applied on the lower limb was recorded by a Kistler force plate. The range of motion of the lower limb joints, the moments applied on the lower limb joints and force transmitted through the leg were the parameters used in this study. The difference between these parameters during walking with and without insole was evaluated using the paired [Formula: see text]-test. Significant value was set at [Formula: see text]. There was no significant difference between the range of motion of ankle joint while walking with and without insole. However, the medial directed force applied on the leg decreased significantly [Formula: see text]. The use of foot insole did not influence the moments transmitted through the hip and knee joints. The walking speed of the subjects improved while walking with foot insole. Use of foot insole influenced the magnitude of the force applied on the leg and the adductor moment of ankle joint due to its influence on foot alignment. As the walking speed of the improved subjects follows the use of insole, it can be concluded that it may have a positive effects on the performance of flat foot subjects.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Massimiliano Pau ◽  
Bruno Leban ◽  
Michela Deidda ◽  
Federica Putzolu ◽  
Micaela Porta ◽  
...  

The majority of people with Multiple Sclerosis (pwMS), report lower limb motor dysfunctions, which may relevantly affect postural control, gait and a wide range of activities of daily living. While it is quite common to observe a different impact of the disease on the two limbs (i.e., one of them is more affected), less clear are the effects of such asymmetry on gait performance. The present retrospective cross-sectional study aimed to characterize the magnitude of interlimb asymmetry in pwMS, particularly as regards the joint kinematics, using parameters derived from angle-angle diagrams. To this end, we analyzed gait patterns of 101 pwMS (55 women, 46 men, mean age 46.3, average Expanded Disability Status Scale (EDSS) score 3.5, range 1–6.5) and 81 unaffected individuals age- and sex-matched who underwent 3D computerized gait analysis carried out using an eight-camera motion capture system. Spatio-temporal parameters and kinematics in the sagittal plane at hip, knee and ankle joints were considered for the analysis. The angular trends of left and right sides were processed to build synchronized angle–angle diagrams (cyclograms) for each joint, and symmetry was assessed by computing several geometrical features such as area, orientation and Trend Symmetry. Based on cyclogram orientation and Trend Symmetry, the results show that pwMS exhibit significantly greater asymmetry in all three joints with respect to unaffected individuals. In particular, orientation values were as follows: 5.1 of pwMS vs. 1.6 of unaffected individuals at hip joint, 7.0 vs. 1.5 at knee and 6.4 vs. 3.0 at ankle (p < 0.001 in all cases), while for Trend Symmetry we obtained at hip 1.7 of pwMS vs. 0.3 of unaffected individuals, 4.2 vs. 0.5 at knee and 8.5 vs. 1.5 at ankle (p < 0.001 in all cases). Moreover, the same parameters were sensitive enough to discriminate individuals of different disability levels. With few exceptions, all the calculated symmetry parameters were found significantly correlated with the main spatio-temporal parameters of gait and the EDSS score. In particular, large correlations were detected between Trend Symmetry and gait speed (with rho values in the range of –0.58 to –0.63 depending on the considered joint, p < 0.001) and between Trend Symmetry and EDSS score (rho = 0.62 to 0.69, p < 0.001). Such results suggest not only that MS is associated with significantly marked interlimb asymmetry during gait but also that such asymmetry worsens as the disease progresses and that it has a relevant impact on gait performances.


2021 ◽  
Vol 29 ◽  
pp. 433-440
Author(s):  
Hyeong-Min Jeon ◽  
Ki-Kwang Lee ◽  
Jun-Young Lee ◽  
Ju-Hwan Shin ◽  
Gwang-Moon Eom

BACKGROUND: Joint loads in different walking strategies during stair descent have been investigated in terms of the joint moment in association with the risk of osteoarthritis. However, the absorption mechanisms of the potential energy loss are not known. OBJECTIVE: This study aims to compare the mechanical energy absorptions in lower limb joints in different initial foot contact strategies. METHODS: Nineteen young subjects walked down on instrumented stairs with two different strategies, i.e., forefoot and rearfoot strike. Power and energy at lower limb joints during stance phase were compared between strategies. RESULTS: Lower limb joints absorbed 73 ± 11% of the potential energy released by descending stairs and there was no difference between strategies. Rearfoot strategy absorbed less energy than forefoot strategy at the ankle joint in the 1st phase, which was compensated mainly by more energy absorption at the knee in the 2nd phase and less energy generation at the hip joints in the 3rd phase. CONCLUSION: The results suggest that a leg absorbs most of the potential energy while descending stairs irrespective of the walking strategies and that any reduction of energy absorption at one joint is compensated by other joints. Greater energy absorption at the knee joint compared to the other joints suggests high burden of knee joint muscles and connective tissues during stair-descent, which is even more significant for the rearfoot strike strategy.


2018 ◽  
Vol 68 ◽  
pp. 78-83 ◽  
Author(s):  
Katy H. Stimpson ◽  
Lauren N. Heitkamp ◽  
Joscelyn S. Horne ◽  
Jesse C. Dean

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shota Hagio ◽  
Makoto Nakazato ◽  
Motoki Kouzaki

AbstractGravity plays a crucial role in shaping patterned locomotor output to maintain dynamic stability during locomotion. The present study aimed to clarify the gravity-dependent regulation of modules that organize multiple muscle activities during walking in humans. Participants walked on a treadmill at seven speeds (1–6 km h−1 and a subject- and gravity-specific speed determined by the Froude number (Fr) corresponding to 0.25) while their body weight was partially supported by a lift to simulate walking with five levels of gravity conditions from 0.07 to 1 g. Modules, i.e., muscle-weighting vectors (spatial modules) and phase-dependent activation coefficients (temporal modules), were extracted from 12 lower-limb electromyographic (EMG) activities in each gravity (Fr ~ 0.25) using nonnegative matrix factorization. Additionally, a tensor decomposition model was fit to the EMG data to quantify variables depending on the gravity conditions and walking speed with prescribed spatial and temporal modules. The results demonstrated that muscle activity could be explained by four modules from 1 to 0.16 g and three modules at 0.07 g, and the modules were shared for both spatial and temporal components among the gravity conditions. The task-dependent variables of the modules acting on the supporting phase linearly decreased with decreasing gravity, whereas that of the module contributing to activation prior to foot contact showed nonlinear U-shaped modulation. Moreover, the profiles of the gravity-dependent modulation changed as a function of walking speed. In conclusion, reduced gravity walking was achieved by regulating the contribution of prescribed spatial and temporal coordination in muscle activities.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2805
Author(s):  
Inmaculada Requelo-Rodríguez ◽  
Aurora Castro-Méndez ◽  
Ana María Jiménez-Cebrián ◽  
María Luisa González-Elena ◽  
Inmaculada C. Palomo-Toucedo ◽  
...  

Walking is part of daily life and in asymptomatic subjects it is relatively easy. The physiology of walking is complex and when this complex control system fails, the risk of falls increases. As a result, gait disorders have a major impact on the older adult population and have increased in frequency as a result of population aging. Therefore, the OptoGait sensor is intended to identify gait imbalances in pronating feet to try to prevent falling and injury by compensating for it with treatments that normalize such alteration. This study is intended to assess whether spatiotemporal alterations occur in the gait cycle in a young pronating population (cases) compared to a control group (non-pronating patients) analyzed with OptoGait. Method: a total of n = 142 participants consisting of n = 70 cases (pronators) and n = 72 healthy controls were studied by means of a 30 s treadmill program with a system of 96 OptoGait LED sensors. Results: Significant differences were found between the two groups and both feet in stride length and stride time, gait cycle duration and gait cadence (in all cases p < 0.05). Conclusions: pronating foot posture alters normal gait patterns measured by OptoGait; this finding presents imbalance in gait as an underlying factor. Prevention of this alteration could be considered in relation to its relationship to the risk of falling in future investigations.


Sign in / Sign up

Export Citation Format

Share Document