scholarly journals Targeted intragenic demethylation initiates chromatin rewiring for gene activation

2020 ◽  
Author(s):  
Yanjing V. Liu ◽  
Mahmoud A. Bassal ◽  
Quy Xiao Xuan Lin ◽  
Chan-Shuo Wu ◽  
Junsu Kwon ◽  
...  

AbstractAberrant DNA methylation in the region surrounding the transcription start site is a hallmark of gene silencing in cancer. Currently approved demethylating agents lack specificity and exhibit high toxicity. Herein we show, using the p16 gene as an example, that targeted demethylation of the promoter-exon 1-intron 1 (PrExI) region initiates an epigenetic wave of local chromatin remodeling and distal long-range interactions, culminating in gene-locus specific activation. Through development of CRISPR-DiR (DNMT1-interacting RNA), in which ad hoc edited guides block methyltransferase activity in a locus-specific fashion, we demonstrate that demethylation is coupled to epigenetic and topological changes. These results suggest the existence of a specialized “demethylation firing center (DFC)” which can be switched on by an adaptable and selective RNA-mediated approach for locus-specific transcriptional activation.One Sentence SummaryLocus demethylation via CRISPR-DiR reshapes chromatin structure and specifically reactivates its cognate gene.

1993 ◽  
Vol 13 (12) ◽  
pp. 7380-7392
Author(s):  
P Lepage ◽  
A Devault ◽  
P Gros

In multidrug-resistant (MDR) derivatives of the mouse lymphoid tumor P388, the emergence of MDR is associated with overexpression and transcriptional activation of the mdr3 gene, either in the absence of (P388/VCR-10) or concomitant with (P388/ADM-2) gene amplification. In both instances, Northern (RNA) blotting analyses have suggested the presence of altered mdr3 transcripts in these cells, possibly originating from novel transcription initiation sites. The mechanisms underlying mdr3 overexpression in these cells have been investigated. In P388/VCR-10 cells, Southern blotting analyses together with genomic DNA cloning and nucleotide sequencing have demonstrated the presence of an intact mouse mammary tumor virus (MMTV) within the boundaries of intron 1 of mdr3. cDNA cloning and nucleotide sequencing indicated that this integration event results in the synthesis and overexpression of a hybrid MMTV-mdr3 mRNA which initiates within the U3 region of the 5' long terminal repeat (LTR) of the provirus. Consequently, this mRNA lacks the normal exon 1 of mdr3 but contains (i) MMTV LTR-derived sequences at its 5' end, (ii) a novel mdr3 exon, mapping within the boundaries of intron 1 downstream of the MMTV integration site and generated by alternative splicing, and (iii) an otherwise intact 3' portion of mdr3 starting at exon 2. A similar type of analysis of P388/ADM-2 cells revealed that mdr3 overexpression in these cells is associated with the integration of an intracisternal A particle (IAP) within an L1Md repetitive element, immediately upstream of mdr3. The IAP insertion results in the overexpression of hybrid IAP-mdr3 mRNA transcripts that initiate within the 3' LTR of the IAP and which contain IAP LTR-derived sequences at the 5' end spliced 14 nucleotides upstream of the normal exon 1 of mdr3. Taken together, these results indicate that independent retroviral insertions were the initial mutagenic event responsible for mdr3 overexpression and survival during drug selection of these cell lines. Amplification of the rearranged and activated mdr3 gene copy occurred during further selection for high-level drug resistance in P388/ADM-2 cells.


1993 ◽  
Vol 13 (12) ◽  
pp. 7380-7392 ◽  
Author(s):  
P Lepage ◽  
A Devault ◽  
P Gros

In multidrug-resistant (MDR) derivatives of the mouse lymphoid tumor P388, the emergence of MDR is associated with overexpression and transcriptional activation of the mdr3 gene, either in the absence of (P388/VCR-10) or concomitant with (P388/ADM-2) gene amplification. In both instances, Northern (RNA) blotting analyses have suggested the presence of altered mdr3 transcripts in these cells, possibly originating from novel transcription initiation sites. The mechanisms underlying mdr3 overexpression in these cells have been investigated. In P388/VCR-10 cells, Southern blotting analyses together with genomic DNA cloning and nucleotide sequencing have demonstrated the presence of an intact mouse mammary tumor virus (MMTV) within the boundaries of intron 1 of mdr3. cDNA cloning and nucleotide sequencing indicated that this integration event results in the synthesis and overexpression of a hybrid MMTV-mdr3 mRNA which initiates within the U3 region of the 5' long terminal repeat (LTR) of the provirus. Consequently, this mRNA lacks the normal exon 1 of mdr3 but contains (i) MMTV LTR-derived sequences at its 5' end, (ii) a novel mdr3 exon, mapping within the boundaries of intron 1 downstream of the MMTV integration site and generated by alternative splicing, and (iii) an otherwise intact 3' portion of mdr3 starting at exon 2. A similar type of analysis of P388/ADM-2 cells revealed that mdr3 overexpression in these cells is associated with the integration of an intracisternal A particle (IAP) within an L1Md repetitive element, immediately upstream of mdr3. The IAP insertion results in the overexpression of hybrid IAP-mdr3 mRNA transcripts that initiate within the 3' LTR of the IAP and which contain IAP LTR-derived sequences at the 5' end spliced 14 nucleotides upstream of the normal exon 1 of mdr3. Taken together, these results indicate that independent retroviral insertions were the initial mutagenic event responsible for mdr3 overexpression and survival during drug selection of these cell lines. Amplification of the rearranged and activated mdr3 gene copy occurred during further selection for high-level drug resistance in P388/ADM-2 cells.


Author(s):  
Siva Arumugam Saravanaperumal ◽  
Stefano Pallotti ◽  
Dario Pediconi ◽  
Carlo Renieri ◽  
Antonietta La Terza

1988 ◽  
Vol 8 (3) ◽  
pp. 1301-1308 ◽  
Author(s):  
T Enver ◽  
A C Brewer ◽  
R K Patient

Transcriptional activation of the Xenopus laevis beta-globin gene requires the synergistic action of the simian virus 40 enhancer and DNA replication in DEAE-dextran-mediated HeLa cell transfections. Replication does not act through covalent modification of the template, since its requirement was not obviated by the prior replication of the transfected DNA in eucaryotic cells. Transfection of DNA over a 100-fold range demonstrates that replication does not contribute to gene activation simply increasing template copy number. Furthermore, in cotransfections of replicating and nonreplicating constructs, only replicating templates were transcribed. Replication is not simply a requirement of chromatin assembly, since even unreplicated templates generated nucleosomal ladders. Stimulation of beta-globin transcription by DNA replication, though less marked, was also observed in calcium phosphate transfections. We interpret these results as revealing a dynamic role for replication in gene activation.


2000 ◽  
Vol 348 (3) ◽  
pp. 675-686 ◽  
Author(s):  
Isabelle VAN SEUNINGEN ◽  
Michaël PERRAIS ◽  
Pascal PIGNY ◽  
Nicole PORCHET ◽  
Jean-Pierre AUBERT

Control of gene expression in intestinal cells is poorly understood. Molecular mechanisms that regulate transcription of cellular genes are the foundation for understanding developmental and differentiation events. Mucin gene expression has been shown to be altered in many intestinal diseases and especially cancers of the gastrointestinal tract. Towards understanding the transcriptional regulation of a member of the 11p15.5 human mucin gene cluster, we have characterized 3.55 kb of the 5ʹ-flanking region of the human mucin gene MUC5B, including the promoter, the first two exons and the first intron. We report here the promoter activity of successively 5ʹ-truncated sections of 956 bases of this region by fusing it to the coding region of a luciferase reporter gene. The transcription start site was determined by primer-extension analysis. The region upstream of the transcription start site is characterized by the presence of a TATA box at bases -32/-26, DNA-binding elements for transcription factors c-Myc, N-Myc, Sp1 and nuclear factor ĸB as well as putative activator protein (AP)-1-, cAMP-response-element-binding protein (CREB)-, hepatocyte nuclear factor (HNF)-1-, HNF-3-, TGT3-, gut-enriched Krüppel factor (GKLF)-, thyroid transcription factor (TTF)-1- and glucocorticoid receptor element (GRE)-binding sites. Intron 1 of MUC5B was also characterized, it is 2511 nucleotides long and contains a DNA segment of 259 bp in which are clustered eight tandemly repeated GA boxes and a CACCC box that bind Sp1. AP-2α and GATA-1 nuclear factors were also shown to bind to their respective cognate elements in intron 1. In transfection studies the MUC5B promoter showed a cell-specific activity as it is very active in mucus-secreting LS174T cells, whereas it is inactive in Caco-2 enterocytes and HT-29 STD (standard) undifferentiated cells. Within the promoter, maximal transcription activity was found in a segment covering the first 223 bp upstream of the transcription start site. Finally, in co-transfection experiments a transactivating effect of Sp1 on to MUC5B promoter was seen in LS174T and Caco-2 cells.


2020 ◽  
Vol 117 (48) ◽  
pp. 30805-30815
Author(s):  
Mingzhe Shen ◽  
Chae Jin Lim ◽  
Junghoon Park ◽  
Jeong Eun Kim ◽  
Dongwon Baek ◽  
...  

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


2021 ◽  
Vol 118 (6) ◽  
pp. e1922864118 ◽  
Author(s):  
Yu-Ling Lee ◽  
Keiichi Ito ◽  
Wen-Chieh Pi ◽  
I-Hsuan Lin ◽  
Chi-Shuen Chu ◽  
...  

The chimeric transcription factor E2A-PBX1, containing the N-terminal activation domains of E2A fused to the C-terminal DNA-binding domain of PBX1, results in 5% of pediatric acute lymphoblastic leukemias (ALL). We recently have reported a mechanism for RUNX1-dependent recruitment of E2A-PBX1 to chromatin in pre-B leukemic cells; but the subsequent E2A-PBX1 functions through various coactivators and the general transcriptional machinery remain unclear. The Mediator complex plays a critical role in cell-specific gene activation by serving as a key coactivator for gene-specific transcription factors that facilitates their function through the RNA polymerase II transcriptional machinery, but whether Mediator contributes to aberrant expression of E2A-PBX1 target genes remains largely unexplored. Here we show that Mediator interacts directly with E2A-PBX1 through an interaction of the MED1 subunit with an E2A activation domain. Results of MED1 depletion by CRISPR/Cas9 further indicate that MED1 is specifically required for E2A-PBX1–dependent gene activation and leukemic cell growth. Integrated transcriptome and cistrome analyses identify pre-B cell receptor and cell cycle regulatory genes as direct cotargets of MED1 and E2A-PBX1. Notably, complementary biochemical analyses also demonstrate that recruitment of E2A-PBX1 to a target DNA template involves a direct interaction with DNA-bound RUNX1 that can be further stabilized by EBF1. These findings suggest that E2A-PBX1 interactions with RUNX1 and MED1/Mediator are of functional importance for both gene-specific transcriptional activation and maintenance of E2A-PBX1–driven leukemia. The MED1 dependency for E2A-PBX1–mediated gene activation and leukemogenesis may provide a potential therapeutic opportunity by targeting MED1 in E2A-PBX1+ pre-B leukemia.


2021 ◽  
pp. 1197-1201
Author(s):  
Peni Wahyu Prihandini ◽  
Almira Primasari ◽  
Aryogi Aryogi ◽  
Jauhari Efendy ◽  
Muchamad Luthfi ◽  
...  

Background and Aim: Myostatin (MSTN), a member of the transforming growth factor-β family, is a negative regulator of muscle mass. This study aimed to detect the genetic variation of the 1160 bp fragment of exon 1 and part of intron 1 of the MSTN gene in several cattle populations raised in Indonesia. Materials and Methods: Polymerase chain reaction products of the MSTN gene amplified from 92 animals representing 10 cattle populations (Peranakan Ongole [PO], Belgian Blue x PO cross, Rambon, PO x Bali cross, Jabres, Galekan, Sragen, Donggala, Madura, and Bali) were sequenced, compared, and aligned with bovine MSTN of Bos taurus (GenBank Acc. No. AF320998.1) and Bos indicus (GenBank Acc. No. AY794986.1). Results: Four nucleotide substitutions (nt 1045 and 1066 in intron 1; nt 262 and 418 in exon 1) and two indels (nt 807 and 869 in intron 1) were synonymous mutations. Among these substitutions, only the nt 262G>C and nt 418A>G loci were polymorphic in all populations, except Bali cattle. The frequencies of the nt 262C (0.82) and nt 418A (0.65) alleles were highest. For the nt 262G>C locus, the CC genotype had the highest frequency (0.66) followed by GC (0.30) and CC (0.03). For the nt 418A>G locus, the AG genotype had the highest frequency (0.52) followed by AA (0.39) and GG (0.09). Conclusion: The results, showing genetic variations in exon 1 and intron 1 of the MSTN gene, might be helpful for future association studies.


2000 ◽  
Vol 20 (23) ◽  
pp. 8879-8888 ◽  
Author(s):  
Zuqin Nie ◽  
Yutong Xue ◽  
Dafeng Yang ◽  
Sharleen Zhou ◽  
Bonnie J. Deroo ◽  
...  

ABSTRACT The SWI/SNF family of chromatin-remodeling complexes facilitates gene activation by assisting transcription machinery to gain access to targets in chromatin. This family includes BAF (also called hSWI/SNF-A) and PBAF (hSWI/SNF-B) from humans and SWI/SNF and Rsc fromSaccharomyces cerevisiae. However, the relationship between the human and yeast complexes is unclear because all human subunits published to date are similar to those of both yeast SWI/SNF and Rsc. Also, the two human complexes have many identical subunits, making it difficult to distinguish their structures or functions. Here we describe the cloning and characterization of BAF250, a subunit present in human BAF but not PBAF. BAF250 contains structural motifs conserved in yeast SWI1 but not in any Rsc components, suggesting that BAF is related to SWI/SNF. BAF250 is also a homolog of the Drosophila melanogaster Osa protein, which has been shown to interact with a SWI/SNF-like complex in flies. BAF250 possesses at least two conserved domains that could be important for its function. First, it has an AT-rich DNA interaction-type DNA-binding domain, which can specifically bind a DNA sequence known to be recognized by a SWI/SNF family-related complex at the β-globin locus. Second, BAF250 stimulates glucocorticoid receptor-dependent transcriptional activation, and the stimulation is sharply reduced when the C-terminal region of BAF250 is deleted. This region of BAF250 is capable of interacting directly with the glucocorticoid receptor in vitro. Our data suggest that BAF250 confers specificity to the human BAF complex and may recruit the complex to its targets through either protein-DNA or protein-protein interactions.


1990 ◽  
Vol 10 (12) ◽  
pp. 6299-6305
Author(s):  
M Talerico ◽  
S M Berget

Three exon constructs containing identical intron and exon sequences were mutated at the 5' splice site beginning intron 2 and assayed for the effect of the mutation on splicing of the upstream intron in vitro. Alteration of two or six bases within the 5' splice site reduced removal of intron 1 at least 20-fold, as determined by quantitation of either spliced product or released lariat RNA. The prominent product was skip splicing of exon 1 to exon 3. Examination of complex formation indicated that mutation of the 5' splice site terminating exon 2 depressed the ability of precursor RNAs containing just the affected exon to direct assembly in vitro. These results suggest that mutation at the end of an internal exon inhibits the ability of the exon to be recognized by splicing factors. A comparison of the known vertebrate 5' splice site mutations in which the mutation resides at the end of an internal exon indicated that exon skipping is the preferred phenotype for this type of mutation, in agreement with the in vitro observation reported here. Inhibition of splicing by mutation at the distal and of the exon supports the suggestion that exons, rather than splice sites, are the recognition units for assembly of the spliceosome.


Sign in / Sign up

Export Citation Format

Share Document