scholarly journals Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species

2020 ◽  
Author(s):  
Thomas M. Winkelmüller ◽  
Frederickson Entila ◽  
Shajahan Anver ◽  
Anna Piasecka ◽  
Baoxing Song ◽  
...  

AbstractPlants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species for PTI responses to the MAMP flg22, we identified a set of genes with expression changes under purifying selection in the Brassicaceae species and genes exhibiting species-specific expression signatures. Variation in flg22-triggered transcriptome and metabolome responses across Brassicaceae species was incongruent with their phylogeny while expression changes were strongly conserved within A. thaliana, suggesting directional selection for some species-specific gene expression. We found the enrichment of WRKY transcription factor binding sites in 5’-regulatory regions in conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene responses in PTI. Our findings advance our understanding of transcriptome evolution during biotic stress.

Author(s):  
Thomas M Winkelmüller ◽  
Frederickson Entila ◽  
Shajahan Anver ◽  
Anna Piasecka ◽  
Baoxing Song ◽  
...  

Abstract Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5′-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.


2021 ◽  
Vol 4 (11) ◽  
pp. e202101075
Author(s):  
Stephen Henderson ◽  
Venu Pullabhatla ◽  
Arnulf Hertweck ◽  
Emanuele de Rinaldis ◽  
Javier Herrero ◽  
...  

Gene expression programs controlled by lineage-determining transcription factors are often conserved between species. However, infectious diseases have exerted profound evolutionary pressure, and therefore the genes regulated by immune-specific transcription factors might be expected to exhibit greater divergence. T-bet (Tbx21) is the immune-specific, lineage-specifying transcription factor for T helper type I (Th1) immunity, which is fundamental for the immune response to intracellular pathogens but also underlies inflammatory diseases. We compared T-bet genomic targets between mouse and human CD4+ T cells and correlated T-bet binding patterns with species-specific gene expression. Remarkably, we found that the majority of T-bet target genes are conserved between mouse and human, either via preservation of binding sites or via alternative binding sites associated with transposon-linked insertion. Species-specific T-bet binding was associated with differences in transcription factor–binding motifs and species-specific expression of associated genes. These results provide a genome-wide cross-species comparison of Th1 gene regulation that will enable more accurate translation of genetic targets and therapeutics from pre-clinical models of inflammatory and infectious diseases and cancer into human clinical trials.


2021 ◽  
Author(s):  
Stephen Henderson ◽  
Venu Pullabhatla ◽  
Arnulf Hertweck ◽  
Emanuele de Rinaldis ◽  
Javier Herrero ◽  
...  

ABSTRACTGene expression programmes controlled by lineage-determining transcription factors are often conserved between species. However, infectious diseases have exerted profound evolutionary pressure, and therefore the genes regulated by immune-specific transcription factors might be expected to exhibit greater divergence due to exposure to species-specific pathogens. T-bet (Tbx21) is the immune-specific lineage-defining transcription factor for T helper type I (Th1) immunity, which is fundamental for the immune response to intracellular pathogens but also underlies inflammatory diseases. We therefore compared T-bet genomic targets between mouse and human CD4+ T cells and correlated T-bet binding patterns with species-specific gene expression. Remarkably, we show that the vast majority of T-bet regulated genes are conserved between mouse and human, either via preservation of a binding site or via an alternative binding site associated with transposon-linked insertion. We also identified genes that are specifically targeted by T-bet in humans or mice and which exhibited species-specific expression. These results provide a genome-wide cross-species comparison of T-bet target gene regulation that will enable more accurate translation of genetic targets and therapeutics from pre-clinical models of inflammatory disease into human clinical trials.


Author(s):  
Ekaterina Bourova-Flin ◽  
Samira Derakhshan ◽  
Afsaneh Goudarzi ◽  
Tao Wang ◽  
Anne-Laure Vitte ◽  
...  

Abstract Background Large-scale genetic and epigenetic deregulations enable cancer cells to ectopically activate tissue-specific expression programmes. A specifically designed strategy was applied to oral squamous cell carcinomas (OSCC) in order to detect ectopic gene activations and develop a prognostic stratification test. Methods A dedicated original prognosis biomarker discovery approach was implemented using genome-wide transcriptomic data of OSCC, including training and validation cohorts. Abnormal expressions of silent genes were systematically detected, correlated with survival probabilities and evaluated as predictive biomarkers. The resulting stratification test was confirmed in an independent cohort using immunohistochemistry. Results A specific gene expression signature, including a combination of three genes, AREG, CCNA1 and DDX20, was found associated with high-risk OSCC in univariate and multivariate analyses. It was translated into an immunohistochemistry-based test, which successfully stratified patients of our own independent cohort. Discussion The exploration of the whole gene expression profile characterising aggressive OSCC tumours highlights their enhanced proliferative and poorly differentiated intrinsic nature. Experimental targeting of CCNA1 in OSCC cells is associated with a shift of transcriptomic signature towards the less aggressive form of OSCC, suggesting that CCNA1 could be a good target for therapeutic approaches.


2000 ◽  
Vol 20 (9) ◽  
pp. 3316-3329 ◽  
Author(s):  
Carsten Müller ◽  
Carol Readhead ◽  
Sven Diederichs ◽  
Gregory Idos ◽  
Rong Yang ◽  
...  

ABSTRACT Gene expression in mammalian organisms is regulated at multiple levels, including DNA accessibility for transcription factors and chromatin structure. Methylation of CpG dinucleotides is thought to be involved in imprinting and in the pathogenesis of cancer. However, the relevance of methylation for directing tissue-specific gene expression is highly controversial. The cyclin A1 gene is expressed in very few tissues, with high levels restricted to spermatogenesis and leukemic blasts. Here, we show that methylation of the CpG island of the human cyclin A1 promoter was correlated with nonexpression in cell lines, and the methyl-CpG binding protein MeCP2 suppressed transcription from the methylated cyclin A1 promoter. Repression could be relieved by trichostatin A. Silencing of a cyclin A1 promoter-enhanced green fluorescent protein (EGFP) transgene in stable transfected MG63 osteosarcoma cells was also closely associated with de novo promoter methylation. Cyclin A1 could be strongly induced in nonexpressing cell lines by trichostatin A but not by 5-aza-cytidine. The cyclin A1 promoter-EGFP construct directed tissue-specific expression in male germ cells of transgenic mice. Expression in the testes of these mice was independent of promoter methylation, and even strong promoter methylation did not suppress promoter activity. MeCP2 expression was notably absent in EGFP-expressing cells. Transcription from the transgenic cyclin A1 promoter was repressed in most organs outside the testis, even when the promoter was not methylated. These data show the association of methylation with silencing of the cyclin A1 gene in cancer cell lines. However, appropriate tissue-specific repression of the cyclin A1 promoter occurs independently of CpG methylation.


1992 ◽  
Vol 66 (1) ◽  
pp. 62-67 ◽  
Author(s):  
S. Sun ◽  
T. Matsuura ◽  
K. Sugane

ABSTRACTA previously reported cDNA clone encoding 34 kDa antigenic polypeptide of Dirofilaria immitis (λ cD34) was studied to elucidate the mechanism of stage-specific gene expression. The 34 kDa polypeptide was a larva-specific antigen and the mRNA was detectable in microfilariae but not in adult worms and eggs. The λ cD34 gene was not sex linked and was contained in the genome of D. immitis at each stage. The stage-specific expression of the developmentally regulated gene in D. immitis may be controlled primarily at the mRNA level.


Development ◽  
1990 ◽  
Vol 108 (1) ◽  
pp. 1-17 ◽  
Author(s):  
P.M. Wassarman

Complementary molecules on the surface of eggs and sperm are responsible for species-specific interactions between gametes during fertilization in both plants and animals. In this essay, several aspects of current research on the mouse egg receptor for sperm, a zona pellucida glycoprotein called ZP3, are addressed. These include the structure, synthesis, and functions of the sperm receptor during oogenesis and fertilization in mice. Several conclusions are drawn from available information. These include (I) ZP3 is a member of a unique class of glycoproteins found exclusively in the extracellular coat (zona pellucida) of mammalian eggs. (II) ZP3 gene expression is an example of oocyte-specific and, therefore, sex-specific gene expression during mammalian development. (III) ZP3 is a structural glycoprotein involved in assembly of the egg extracellular coat during mammalian oogenesis. (IV) ZP3 is a sperm receptor involved in carbohydrate-mediated gamete recognition and adhesion during mammalian fertilization. (V) ZP3 is an inducer of sperm exocytosis (acrosome reaction) during mammalian fertilization. (VI) ZP3 participates in the secondary block to polyspermy following fertilization in mammals. (VII) The extracellular coat of other mammalian eggs contains a glycoprotein that is functionally analogous to mouse ZP3. The unique nature, highly restricted expression, and multiple roles of ZP3 during mammalian development make this glycoprotein a particularly attractive subject for investigation at both the cellular and molecular levels.


2020 ◽  
Author(s):  
Nil Aygün ◽  
Angela L. Elwell ◽  
Dan Liang ◽  
Michael J. Lafferty ◽  
Kerry E. Cheek ◽  
...  

SummaryInterpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing is mainly performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements of cells present during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs and allele specific expression in primary human neural progenitors (n=85) and their sorted neuronal progeny (n=74). Using colocalization and TWAS, we uncover cell-type specific regulatory mechanisms underlying risk for these traits.


2017 ◽  
Author(s):  
Yang Zhang ◽  
Daniel W. Ngu ◽  
Daniel Carvalho ◽  
Zhikai Liang ◽  
Yumou Qiu ◽  
...  

AbstractCross-species comparisons of transcriptional regulation have the potential to identify functionally constrained transcriptional regulation and genes for which a change in transcriptional regulation correlates with a change in phenotype. Conventional differential gene expression analysis and a different approach based on identifying differentially regulated orthologs (DROs) are compared using paired time course gene expression data from two species which respond similarly to cold – maize (Zea mays) and sorghum (Sorghum bicolor). Both approaches suggest that, for genes conserved at syntenic positions for millions of years, the majority of cold responsive transcriptional regulation is species specific, although initial transcriptional responses to cold appear to be more conserved between the two species than later responses. In maize, the promoters of genes with both species specific and conserved transcriptional responses to cold tend to contain more micrococcal nuclease hypersensitive sites in their promoters, a proxy for open chromatin. However, genes with conserved patterns of transcriptional regulation between the two species show lower ratios of nonsynonymous to synonymous substitutions consistent with this population of genes experiencing stronger purifying selection. We hypothesize that cold responsive transcriptional regulation is a fast evolving and largely neutral molecular phenotype for the majority of genes in Andropogoneae, while a smaller core set of genes involved in perceiving and responding to cold stress are subject to functionally constrained cold responsive regulation.


2020 ◽  
Vol 48 (5) ◽  
pp. 2544-2563 ◽  
Author(s):  
Pilar Menendez-Gil ◽  
Carlos J Caballero ◽  
Arancha Catalan-Moreno ◽  
Naiara Irurzun ◽  
Inigo Barrio-Hernandez ◽  
...  

Abstract The evolution of gene expression regulation has contributed to species differentiation. The 3′ untranslated regions (3′UTRs) of mRNAs include regulatory elements that modulate gene expression; however, our knowledge of their implications in the divergence of bacterial species is currently limited. In this study, we performed genome-wide comparative analyses of mRNAs encoding orthologous proteins from the genus Staphylococcus and found that mRNA conservation was lost mostly downstream of the coding sequence (CDS), indicating the presence of high sequence diversity in the 3′UTRs of orthologous genes. Transcriptomic mapping of different staphylococcal species confirmed that 3′UTRs were also variable in length. We constructed chimeric mRNAs carrying the 3′UTR of orthologous genes and demonstrated that 3′UTR sequence variations affect protein production. This suggested that species-specific functional 3′UTRs might be specifically selected during evolution. 3′UTR variations may occur through different processes, including gene rearrangements, local nucleotide changes, and the transposition of insertion sequences. By extending the conservation analyses to specific 3′UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis mRNAs, we showed that 3′UTR variability is widespread in bacteria. In summary, our work unveils an evolutionary bias within 3′UTRs that results in species-specific non-coding sequences that may contribute to bacterial diversity.


Sign in / Sign up

Export Citation Format

Share Document