scholarly journals Schizophrenia-associated differential DNA methylation in the superior temporal gyrus is distributed to many sites across the genome and annotated by the risk gene MAD1L1

Author(s):  
Brandon C McKinney ◽  
Christopher M Hensler ◽  
Yue Wei ◽  
David A Lewis ◽  
Jiebiao Wang ◽  
...  

Background: Many genetic variants and multiple environmental factors increase risk for schizophrenia (SZ). SZ-associated genetic variants and environmental risk factors have been associated with altered DNA methylation (DNAm), the addition of a methyl group to a cytosine in DNA. DNAm changes, acting through effects on gene expression, represent one potential mechanism by which genetic and environmental factors confer risk for SZ and alter neurobiology. Methods: We investigated the hypothesis that DNAm in superior temporal gyrus (STG) is altered in SZ. We measured genome-wide DNAm in postmortem STG from 44 SZ subjects and 44 non-psychiatric comparison (NPC) subjects using Illumina Infinium MethylationEPIC BeadChip microarrays. We applied tensor composition analysis to extract cell type-specific DNAm signals. Results: We found that DNAm levels differed between SZ and NPC subjects at 242 sites, and 44 regions comprised of two or more sites, with a false discovery rate cutoff of q=0.1. We determined differential methylation at nine of the individual sites were driven by neuron-specific DNAm alterations. Glia-specific DNAm alterations drove the differences at two sites. Notably, we identied SZ-associated differential methylation within within mitotic arrest deficient 1-like 1 (MAD1L1), a gene strongly associated with SZ through genome-wide association studies. Conclusions: This study adds to a growing number of studies that implicate DNAm, and epigenetic pathways more generally, in SZ. Our findings suggest differential methylation may contribute to STG dysfunction in SZ. Future studies to identify the mechanisms by which altered DNAm, especially within MAD1L1, contributes to SZ neurobiology are warranted.

2018 ◽  
Author(s):  
Darina Czamara ◽  
Gökçen Eraslan ◽  
Jari Lahti ◽  
Christian M. Page ◽  
Marius Lahti-Pulkkinen ◽  
...  

AbstractBackgroundEpigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. We examined the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs), defined as consecutive CpGs showing the highest variability of DNAm in 4 independent cohorts (PREDO, DCHS, UCI, MoBa, N=2,934).ResultsWe used Akaike’s information criterion to test which factors best explained variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E) including maternal demographic, psychosocial and metabolism related phenotypes, genotypes in cis (G), or their additive (G+E) or interaction (GxE) effects. G+E and GxE models consistently best explained variability in DNAm of VMRs across the cohorts, with G explaining the remaining sites best. VMRs best explained by G, GxE or G+E, as well as their associated functional genetic variants (predicted using deep learning algorithms), were located in distinct genomic regions, with different enrichments for transcription and enhancer marks. Genetic variants of not only G and G+E models, but also of variants in GxE models were significantly enriched in genome wide association studies (GWAS) for complex disorders.ConclusionGenetic and environmental factors in combination best explain DNAm at VMRs. The CpGs best explained by G, G+E or GxE are functionally distinct. The enrichment of GxE variants in GWAS for complex disorders supports their importance for disease risk.


2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel L. McCartney ◽  
Josine L. Min ◽  
Rebecca C. Richmond ◽  
Ake T. Lu ◽  
Maria K. Sobczyk ◽  
...  

Abstract Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.


2011 ◽  
Vol 40 (D1) ◽  
pp. D1047-D1054 ◽  
Author(s):  
Mulin Jun Li ◽  
Panwen Wang ◽  
Xiaorong Liu ◽  
Ee Lyn Lim ◽  
Zhangyong Wang ◽  
...  

2018 ◽  
pp. 57-69 ◽  
Author(s):  
Till F. M. Andlauer ◽  
Bertram Müller-Myhsok ◽  
Stephan Ripke

Over more than the last decade, hypothesis-free genome-wide association studies (GWAS) have been widely used to detect genetic factors influencing phenotypes of interest. The basic principle of GWAS has been unchanged since the beginning: a series of univariate tests is conducted on all genetic variants available across the genome. We present study designs and commonly used methods for genome-wide studies, with a focus on the analysis of common variants. The basic concepts required for an application of GWAS in psychiatric genetics are introduced, from power calculation to meta-analysis. This chapter will help the reader in gaining the knowledge required for participation in and realization of GWAS of both qualitative and quantitative traits.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tianxiao Huan ◽  
Roby Joehanes ◽  
Ci Song ◽  
Fen Peng ◽  
Yichen Guo ◽  
...  

Abstract Identifying methylation quantitative trait loci (meQTLs) and integrating them with disease-associated variants from genome-wide association studies (GWAS) may illuminate functional mechanisms underlying genetic variant-disease associations. Here, we perform GWAS of >415 thousand CpG methylation sites in whole blood from 4170 individuals and map 4.7 million cis- and 630 thousand trans-meQTL variants targeting >120 thousand CpGs. Independent replication is performed in 1347 participants from two studies. By linking cis-meQTL variants with GWAS results for cardiovascular disease (CVD) traits, we identify 92 putatively causal CpGs for CVD traits by Mendelian randomization analysis. Further integrating gene expression data reveals evidence of cis CpG-transcript pairs causally linked to CVD. In addition, we identify 22 trans-meQTL hotspots each targeting more than 30 CpGs and find that trans-meQTL hotspots appear to act in cis on expression of nearby transcriptional regulatory genes. Our findings provide a powerful meQTL resource and shed light on DNA methylation involvement in human diseases.


Author(s):  
Denis Awany ◽  
Emile R Chimusa

Abstract As we observe the $70$th anniversary of the publication by Robertson that formalized the notion of ‘heritability’, geneticists remain puzzled by the problem of missing/hidden heritability, where heritability estimates from genome-wide association studies (GWASs) fall short of that from twin-based studies. Many possible explanations have been offered for this discrepancy, including existence of genetic variants poorly captured by existing arrays, dominance, epistasis and unaccounted-for environmental factors; albeit these remain controversial. We believe a substantial part of this problem could be solved or better understood by incorporating the host’s microbiota information in the GWAS model for heritability estimation and may also increase human traits prediction for clinical utility. This is because, despite empirical observations such as (i) the intimate role of the microbiome in many complex human phenotypes, (ii) the overlap between genetic variants associated with both microbiome attributes and complex diseases and (iii) the existence of heritable bacterial taxa, current GWAS models for heritability estimate do not take into account the contributory role of the microbiome. Furthermore, heritability estimate from twin-based studies does not discern microbiome component of the observed total phenotypic variance. Here, we summarize the concept of heritability in GWAS and microbiome-wide association studies, focusing on its estimation, from a statistical genetics perspective. We then discuss a possible statistical method to incorporate the microbiome in the estimation of heritability in host GWAS.


Sign in / Sign up

Export Citation Format

Share Document