scholarly journals DDR1-INDUCED NEUTROPHIL EXTRACELLULAR TRAPS DRIVE PANCREATIC CANCER METASTASIS

2020 ◽  
Author(s):  
Jenying Deng ◽  
Yaan Kang ◽  
Chien-Chia Cheng ◽  
Xinqun Li ◽  
Bingbing Dai ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) tumors are characterized by a desmoplastic reaction and dense collagen that is known to promote cancer progression. A central mediator of pro-tumorigenic collagen signaling is the receptor tyrosine kinase discoid domain receptor 1 (DDR1). DDR1 is a critical driver of a mesenchymal and invasive cancer cell PDAC phenotype. Previous studies have demonstrated that genetic or pharmacologic inhibition of DDR1 prevents PDAC tumorigenesis and metastasis. Here, we investigated whether DDR1 signaling has cancer cell non-autonomous effects that promote PDAC progression and metastasis. We demonstrate that collagen-induced DDR1 activation in cancer cells is a major stimulus for CXCL5 production, resulting in the recruitment of tumor-associated neutrophils (TANs), the formation of neutrophil extracellular traps (NETs) and subsequent cancer cell invasion and metastasis. Moreover, we have identified that collagen-induced CXCL5 production was mediated by a DDR1-PKCθ-SYK-NFκB signaling cascade. Together, these results highlight the critical contribution of collagen I-DDR1 interaction in the formation of an immune microenvironment that promotes PDAC metastasis.SummaryDeng et al find that collagen signaling via DDR1 on human pancreatic cancer cells drives production and release of the cytokine, CXCL5, into systemic circulation. CXCL5 then triggers infiltration of neutrophils into the tumor where they promote cancer cell progression.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


1991 ◽  
Vol 276 (3) ◽  
pp. 599-605 ◽  
Author(s):  
S Yonezawa ◽  
J C Byrd ◽  
R Dahiya ◽  
J J L Ho ◽  
J R Gum ◽  
...  

The purpose of this study was to determine the quantity and nature of the mucins synthesized and secreted by four different pancreatic cancer cell lines. Well- to moderately-differentiated SW1990 and CAPAN-2 human pancreatic cancer cells were found to produce more high-Mr glycoprotein (HMG) than less-differentiated MIA PaCa-2 and PANC-1 cells. Most of the labelled HMG was secreted within 24 h. The results of chemical and enzymic degradation, ion-exchange chromatography and density-gradient centrifugation indicated that the HMG in SW1990 and CAPAN-2 cells has the properties expected for mucins, whereas much of the HMG in MIA PaCa-2 and PANC-1 cells may not be mucin, but proteoglycan. These results are consistent with immunoblots and Northern blots showing the presence of apomucin and apomucin mRNA in SW1990 and CAPAN-2 cells, but not in MIA PaCa-2 and PANC-1 cells. The Western blots and Northern blots also show that SW1990 and CAPAN-2 cells, like breast cancer cells, have the mammary-type apomucin and mRNA coded by the MUC1 gene, but lack the intestinal type apomucin and mRNA coded by the MUC2 gene. In contrast, the colon cancer cell lines tested in culture express apomucin and mRNA coded by MUC2 but not by MUC1.


2019 ◽  
Vol 19 (5) ◽  
pp. 417-427 ◽  
Author(s):  
Xiang Chen ◽  
Jilai Tian ◽  
Gloria H. Su ◽  
Jiayuh Lin

Background:Elevated production of the pro-inflammatory cytokine interleukin-6 (IL-6) and dysfunction of IL-6 signaling promotes tumorigenesis and are associated with poor survival outcomes in multiple cancer types. Recent studies showed that the IL-6/GP130/STAT3 signaling pathway plays a pivotal role in pancreatic cancer development and maintenance.Objective:We aim to develop effective treatments through inhibition of IL-6/GP130 signaling in pancreatic cancer.Methods:The effects on cell viability and cell proliferation were measured by MTT and BrdU assays, respectively. The effects on glycolysis was determined by cell-based assays to measure lactate levels. Protein expression changes were evaluated by western blotting and immunoprecipitation. siRNA transfection was used to knock down estrogen receptor α gene expression. Colony forming ability was determined by colony forming cell assay.Results:We demonstrated that IL-6 can induce pancreatic cancer cell viability/proliferation and glycolysis. We also showed that a repurposing FDA-approved drug bazedoxifene could inhibit the IL-6/IL-6R/GP130 complexes. Bazedoxifene also inhibited JAK1 binding to IL-6/IL-6R/GP130 complexes and STAT3 phosphorylation. In addition, bazedoxifene impeded IL-6 mediated cell viability/ proliferation and glycolysis in pancreatic cancer cells. Consistently, other IL-6/GP130 inhibitors SC144 and evista showed similar inhibition of IL-6 stimulated cell viability, cell proliferation and glycolysis. Furthermore, all three IL-6/GP130 inhibitors reduced the colony forming ability in pancreatic cancer cells.Conclusion:Our findings demonstrated that IL-6 stimulates pancreatic cancer cell proliferation, survival and glycolysis, and supported persistent IL-6 signaling is a viable therapeutic target for pancreatic cancer using IL-6/GP130 inhibitors.


1994 ◽  
Vol 266 (1) ◽  
pp. R277-R283 ◽  
Author(s):  
J. P. Smith ◽  
G. Liu ◽  
V. Soundararajan ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptide cholecystokinin (CCK) is known to stimulate growth of human pancreatic cancer in a receptor-mediated fashion. The purpose of this study was to characterize the receptor responsible for the trophic effects of CCK in cancer cells. With the use of homogenates of PANC-1 human pancreatic cancer cells grown in vitro, the binding characteristics and optimal conditions of radiolabeled selective CCK-receptor antagonists ([3H]L-365,260 and [3H]L-364,718) were examined. Specific and saturable binding was detected with [3H]L-365,260, and Scatchard analysis revealed that the data were consistent for a single site of binding with a binding affinity of 4.3 +/- 0.6 nM and a binding capacity (Bmax) of 283 +/- 68 fmol/mg protein in log phase cells. Binding was dependent on protein concentration, time, temperature, and pH and was sensitive to Na+, K+, Mg2+, and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. In contrast to log phase cells, Bmax decreased by 80 and 92% in confluent and postconfluent cultures, respectively. Subcellular fractionation studies revealed that binding was in the membrane fraction. Competition experiments indicated that L-365,260 and gastrin were more effective at displacing the radiolabeled L-365,260 than CCK. No binding was detected with the CCK-A antagonist [3H]L-364,718. Assays performed with [3H]L-365,260 on five additional human pancreatic cancer cell lines in vitro and tumor tissue from xenografts in nude mice also revealed specific and saturable binding. These results provide the first identification of a CCK-B/gastrin receptor in human pancreatic cancer cells and tumors and explain the effects of CCK on the growth of this malignancy.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3628
Author(s):  
Manoj Amrutkar ◽  
Nils Tore Vethe ◽  
Caroline S. Verbeke ◽  
Monica Aasrum ◽  
Anette Vefferstad Finstadsveen ◽  
...  

Gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC) is attributed to cancer cell-intrinsic drug processing and the impact of the tumor microenvironment, especially pancreatic stellate cells (PSCs). This study uses human PDAC-derived paired primary cancer cells (PCCs) and PSCs from four different tumors, and the PDAC cell lines BxPC-3, Mia PaCa-2, and Panc-1, to assess the fate of gemcitabine by measuring its cellular uptake, cytotoxicity, and LC-MS/MS-based metabolite analysis. Expression analysis and siRNA-mediated knockdown of key regulators of gemcitabine (hENT1, CDA, DCK, NT5C1A) was performed. Compared to PSCs, both the paired primary PCCs and cancer cell lines showed gemcitabine-induced dose-dependent cytotoxicity, high uptake, as well as high and variable intracellular levels of gemcitabine metabolites. PSCs were gemcitabine-resistant and demonstrated significantly lower drug uptake, which was not influenced by co-culturing with their paired PCCs. Expression of key gemcitabine regulators was variable, but overall strong in the cancer cells and significantly lower or undetectable in PSCs. In cancer cells, hENT1 inhibition significantly downregulated gemcitabine uptake and cytotoxicity, whereas DCK knockdown reduced cytotoxicity. In conclusion, heterogeneity in gemcitabine processing among different pancreatic cancer cells and stellate cells results from the differential expression of molecular regulators which determines the effect of gemcitabine.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qing Hua ◽  
Tianjiao Li ◽  
Yixuan Liu ◽  
Xuefang Shen ◽  
Xiaoyan Zhu ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a growing cause of cancer-related mortality worldwide. Kallikrein-related peptidase 8 (KLK8) has potential clinical values in many cancers. However, the clinicopathological significances of KLK8 in PDAC remain unknown. We explored the relationship of KLK8 to clinicopathological features of PDAC based on public databases. KLK8 expression was examined in human PDAC tissues. Cell proliferation and apoptosis were evaluated in KLK8-overexpressed human pancreatic cancer cell lines Mia-paca-2 and Panc-1. The related signaling pathways of KLK8 involved in pancreatic cancer progression were analyzed by gene set enrichment analysis (GSEA) and further verified in in vitro studies. We found that KLK8 was up-regulated in tumor tissues in the TCGA-PAAD cohort, and was an independent prognostic factor for both overall survival and disease-free survival of PDAC. KLK8 mRNA and protein expressions were increased in PDAC tissues compared with para-cancerous pancreas. KLK8 overexpression exerted pro-proliferation and anti-apoptotic functions in Mia-paca-2 and Panc-1 cells. GSEA analysis showed that KLK8 was positively associated with PI3K-Akt-mTOR and Notch pathways. KLK8-induced pro-proliferation and anti-apoptotic effects in Mia-paca-2 and Panc-1 cells were attenuated by inhibitors for PI3K, Akt, and mTOR, but not by inhibitor for Notch. Furthermore, overexpression of KLK8 in Mia-paca-2 and Panc-1 cells significantly increased epidermal growth factor (EGF) levels in the culture media. EGF receptor (EGFR) inhibitor could block KLK8-induced activation of PI3K/Akt/mTOR pathway and attenuate pro-proliferation and anti-apoptotic of KLK8 in Mia-paca-2 and Panc-1 cells. In conclusion, KLK8 overexpression exerts pro-proliferation and anti-apoptotic functions in pancreatic cancer cells via EGF signaling-dependent activation of PI3K/Akt/mTOR pathway. Upregulated KLK8 in PDAC predicts poor prognosis and may be a potential therapeutic target for PDAC.


2021 ◽  
Author(s):  
Barath Udayasuryan ◽  
Tam T.D. Nguyen ◽  
Ariana Umana ◽  
LaDeidra Monet Roberts ◽  
Raffae A Ahmad ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) harbors a complex tumor microbiome that has been implicated in cancer progression and resistance to chemotherapy. Recent clinical investigations uncovered a correlation between high loads of intratumor Fusobacterium nucleatum and decreased patient survival. Here we show that pancreatic cancer cell lines harboring intracellular F. nucleatum secrete elevated levels of cancer-associated cytokines including IL-8, CXCL1, GM-CSF, and MIP-3α. We report that GM-CSF directly increases the proliferation of pancreatic cancer cells, and contributes to increased cellular migration, notably in the absence of immune cell participation. This study is the first to investigate the direct impact of F. nucleatum infection on pancreatic cancer cells. Our results suggest that F. nucleatum within the pancreatic tumor microenvironment elicits infection-specific cytokine secretion that directly contributes adversely to cancer progression and warrants further research into therapeutic manipulation of the pancreatic tumor microbiome.


2018 ◽  
Vol 18 (6) ◽  
pp. 824-831 ◽  
Author(s):  
Sander Bekeschus ◽  
André Käding ◽  
Tim Schröder ◽  
Kristian Wende ◽  
Christine Hackbarth ◽  
...  

Background: Cold physical plasma has been suggested as a new anticancer tool recently. However, direct use of plasma is limited to visible tumors and in some clinical situations, is not feasible. This includes repetitive treatment of peritoneal metastases, which commonly occur in advanced gastrointestinal cancer and in pancreatic cancer in particular. In case of diffuse intraperitoneal metastatic spread, Hyperthermic Intraperitoneal Intraoperative Chemotherapy (HIPEC) is used as a therapeutic approach. Plasma-treated solutions may combine non-toxic characteristics with the anticancer effects of HIPEC. Previous work has provided evidence for an anticancer efficacy of plasma-treated cell culture medium but the clinical relevance of such an approach is low due to its complex formulation and lack of medical accreditation. Objective: Plasma-treated Phosphate-Buffered Saline (PBS), which closely resembles medically certified solutions, was investigated for its cytotoxic effect on 2D monolayer murine pancreatic cancer cells in vitro. Methods: Toxicity studies of primary murine fibroblasts, PDA6606 murine pancreatic cancer cells, and COLO 357 human pancreatic cancer cells exposed to plasma-treated PBS were performed. Results: Plasma-treated PBS significantly decreased cancer cell metabolisms and proliferation whereas plasma-treated Dulbecco’s Modified Eagle Medium had no effect. Moreover, tumor cell growth attenuation was significantly higher when compared to syngeneic primary murine fibroblasts. Both results were confirmed in a human pancreatic cancer cell line. Finally, plasma-treated PBS also decreased the size of pancreatic tumors in a three-dimensional manner, and induction of apoptosis was found to be responsible for all anticancer effects identified. Conclusion: Plasma-treated PBS inhibited cell growth in 2D and 3D models of cancer. These results may help facilitate the development of new plasma-derived anticancer agent with clinical relevance in the future.


2021 ◽  
Vol 22 (4) ◽  
pp. 1870
Author(s):  
Shin Hamada ◽  
Ryotaro Matsumoto ◽  
Yu Tanaka ◽  
Keiko Taguchi ◽  
Masayuki Yamamoto ◽  
...  

Pancreatic cancer remains intractable owing to the lack of effective therapy for unresectable cases. Activating mutations of K-ras are frequently found in pancreatic cancers, but these have not yet been targeted by cancer therapies. The Keap1-Nrf2 system plays a crucial role in mediating the oxidative stress response, which also contributes to cancer progression. Nrf2 activation reprograms the metabolic profile to promote the proliferation of cancer cells. A recent report suggested that K-ras- and Nrf2-active lung cancer cells are sensitive to glutamine depletion. This finding led to the recognition of glutaminase inhibitors as novel anticancer agents. In the current study, we used murine pancreatic cancer tissues driven by mutant K-ras and p53 to establish cell lines expressing constitutively activated Nrf2. Genetic or pharmacological Nrf2 activation in cells via Keap1 deletion or Nrf2 activation sensitized cells to glutaminase inhibition. This phenomenon was confirmed to be dependent on K-ras activation in human pancreatic cancer cell lines harboring mutant K-ras, i.e., Panc-1 and MiaPaCa-2 in response to DEM pretreatment. This phenomenon was not observed in BxPC3 cells harboring wildtype K-ras. These results indicate the possibility of employing Nrf2 activation and glutaminase inhibition as novel therapeutic interventions for K-ras mutant pancreatic cancers.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2538 ◽  
Author(s):  
Huynh Tuan ◽  
Bui Minh ◽  
Phuong Tran ◽  
Jeong Lee ◽  
Ha Oanh ◽  
...  

2′,4′-Dihydroxy-6’-methoxy-3′,5′-dimethylchalcone (DMC), a principal natural chalcone of Cleistocalyx operculatus buds, suppresses the growth of many types of cancer cells. However, the effects of this compound on pancreatic cancer cells have not been evaluated. In our experiments, we explored the effects of this chalcone on two human pancreatic cancer cell lines. A cell proliferation assay revealed that DMC exhibited concentration-dependent cytotoxicity against PANC-1 and MIA PACA2 cells, with IC50 values of 10.5 ± 0.8 and 12.2 ± 0.9 µM, respectively. Treatment of DMC led to the apoptosis of PANC-1 by caspase-3 activation as revealed by annexin-V/propidium iodide double-staining. Western blotting indicated that DMC induced proteolytic activation of caspase-3 and -9, degradation of caspase-3 substrate proteins (including poly[ADP-ribose] polymerase [PARP]), augmented bak protein level, while attenuating the expression of bcl-2 in PANC-1 cells. Taken together, our results provide experimental evidence to support that DMC may serve as a useful chemotherapeutic agent for control of human pancreatic cancer cells.


Sign in / Sign up

Export Citation Format

Share Document