scholarly journals Necator americanus Ancylostoma secreted protein-2 (Na-ASP-2) selectively binds an ascaroside (ascr#3)

2020 ◽  
Author(s):  
Ola El Atab ◽  
Rabih Darwiche ◽  
Nathanyal J. Truax ◽  
Roger Schneiter ◽  
Kenneth G. Hull ◽  
...  

AbstractDuring their infective stages, hookworms release excretory-secretory (E-S) products, including small molecules and proteins, to help evade and suppress the host’s immune system. Small molecules found in E-S products of mammalian hookworms include nematode derived metabolites like ascarosides, which are composed of the sugar ascarylose linked to a fatty acid side chain. Ascarosides play vital roles in signaling, development, reproduction, and survival. The most abundant proteins found in hookworm E-S products are members of the protein family known as Ancylostoma secreted protein (ASP). ASP belongs to the SCP/TAPS (sperm-coating protein / Tpx / antigen 5 / pathogenesis related-1 / Sc7) superfamily of proteins, members of which have previously been shown to bind to eicosanoids and fatty acids. These molecules are structurally similar to the fatty acid moieties of ascarosides. The objective of this study was to determine if the hookworm ASP; N. americanus Ancylostoma secreted protein 2 (Na-ASP-2) binds to the ascarosides or their fatty acid moieties. We describe investigations of our hypothesis that there is a functional relationship between the major secreted proteins and signaling small molecules found in hookworm E-S products. To accomplish this, several ascarosides and their fatty acid moieties were synthesized and tested for in vitro binding to Na-ASP-2 using a ligand competition assay and microscale thermophoresis. Our results reveal that the fatty acid moieties of the ascarosides, bind specifically to the palmitic acid binding cavity of Na-ASP-2. Additionally, ascr#3, an ascaroside that is present in mammalian hookworm E-S products binds to the palmitic acid binding cavity of Na-ASP-2, whereas oscr#10 which is not found in hookworm E-S products does not bind. Future studies are required to determine the structural basis of ascaroside binding by Na-ASP-2 and to understand the physiological significance of these observations.

2020 ◽  
Vol 8 ◽  
Author(s):  
Ola El Atab ◽  
Rabih Darwiche ◽  
Nathanyal J. Truax ◽  
Roger Schneiter ◽  
Kenneth G. Hull ◽  
...  

During their infective stages, hookworms release excretory-secretory (E-S) products, small molecules, and proteins to help evade and suppress the host's immune system. Small molecules found in E-S products of mammalian hookworms include nematode derived metabolites like ascarosides, which are composed of the sugar ascarylose linked to a fatty acid side chain. The most abundant proteins found in hookworm E-S products are members of the protein family known as Ancylostoma secreted protein (ASP). In this study, two ascarosides and their fatty acid moieties were synthesized and tested for in vitro binding to Na-ASP-2 using both a ligand competition assay and microscale thermophoresis. The fatty acid moieties of both ascarosides tested and ascr#3, an ascaroside found in rat hookworm E-S products, bind to Na-ASP-2's palmitate binding cavity. These molecules were confirmed to bind to the palmitate but not the sterol binding sites. An ascaroside, oscr#10, which is not found in hookworm E-S products, does not bind to Na-ASP-2. More studies are required to determine the structural basis of ascarosides binding by Na-ASP-2 and to understand the physiological significance of these observations.


2018 ◽  
Vol 115 (27) ◽  
pp. 7039-7044 ◽  
Author(s):  
Kai Liang ◽  
Ningning Li ◽  
Xiao Wang ◽  
Jianye Dai ◽  
Pulan Liu ◽  
...  

The mitochondrial trifunctional protein (TFP) catalyzes three reactions in the fatty acid β-oxidation process. Mutations in the two TFP subunits cause mitochondrial trifunctional protein deficiency and acute fatty liver of pregnancy that can lead to death. Here we report a 4.2-Å cryo-electron microscopy α2β2 tetrameric structure of the human TFP. The tetramer has a V-shaped architecture that displays a distinct assembly compared with the bacterial TFPs. A concave surface of the TFP tetramer interacts with the detergent molecules in the structure, suggesting that this region is involved in associating with the membrane. Deletion of a helical hairpin in TFPβ decreases its binding to the liposomes in vitro and reduces its membrane targeting in cells. Our results provide the structural basis for TFP function and have important implications for fatty acid oxidation related diseases.


2014 ◽  
Vol 26 (1) ◽  
pp. 115 ◽  
Author(s):  
A. F. González-Serrano ◽  
C. R. Ferreira ◽  
V. Pirro ◽  
J. Heinzmann ◽  
K.-G. Hadeler ◽  
...  

Information on how supplementation of high-yield dairy cows with rumen-protected fat affects fertility in cattle herds is scarce. Here, Holstein-Friesian heifers (n = 84) received a supplement consisting of either rumen-protected conjugated linoleic acid (CLA; cis-9,trans-11-CLA and trans-10,cis-12-CLA) or stearic acid 18 : 0 (SA) on top of an isocaloric grass silage diet. Two supplementation doses were used (100 and 200 g d–1). Blood and follicular fluid were collected at the start and end of the supplementation period for analysis of cholesterol, insulin-like growth factor (IGF), and nonesterified fatty acids (NEFA), and for fatty acid profiling. Although cholesterol, IGF, and NEFA levels did not differ among experimental groups, lipid profiles in blood and follicular fluid were affected in a dose-dependent manner by both supplements. After 45 days of supplementation, oocytes were collected by ovum pick-up (OPU). The mRNA relative abundance of target genes (IGF1r, GJA1, FASN, SREBP1, and SCAP) was analysed in single in vitro- (24 h IVM) and in vivo-matured (collected by OPU 20 h after GnRH injection) oocytes and in vitro-produced blastocysts (Day 8) by qPCR (n = 6/group). Lipid profiling of individual oocytes from the CLA-supplemented (n = 37) and the SA-supplemented (n = 50) was performed by desorption electrospray ionization mass spectrometry (DESI-MS). Oocytes from the CLA-supplemented (n = 413) and the SA-supplemented (n = 350) groups were used for assessing maturation and blastocysts development rates. In immature oocytes, CLA supplementation led to an increase of triacylglycerol 52 : 3 [TAG (52 : 3)] and TAG (52 : 2), squalene, palmitic acid 16 : 0, and oleic acid 18 : 1, and decreased abundance of TAG (56 : 3), TAG (50 : 2) and TAG (48 : 1). In vitro-matured oocytes showed different lipid profiles, with increased abundances of TAG (52 : 3), and TAG (52 : 2) as well as phosphatidylinositol 34 : 1 [Plo (34 : 1)], whereas phosphatidylglycerol (34 : 1) [PG (34 : 1)] and palmitic acid 16 : 0 were less abundant in in vitro-matured oocytes. SCAP was significantly down-regulated in in vitro-matured oocytes from supplemented heifers compared with their in vivo-matured counterparts. Maturation (CLA = 74% v. SA = 67%) and blastocyst rates (CLA = 22.4% v. SA = 12.7%) were different among experimental groups. One-way ANOVA and the Tukey-Kramer test were applied for a multiple comparison of means (P-value ≤ 0.05 was considered as statistically significant). In conclusion, we demonstrate here that fatty acid monitoring along different compartments (i.e. blood system, follicular fluid, and intra-oocyte) after rumen-protected fat supplementation of dairy heifer diet reveals nutritional footprints on oocyte quality and embryo development. These results demonstrate the close relationship between nutrition and cattle herd's fertility and, at the same time, support the role of the bovine model for understanding nutritional-dependent fertility impairments.


2020 ◽  
Vol 21 (3) ◽  
pp. 726
Author(s):  
Xi Lin ◽  
Brandon Pike ◽  
Jinan Zhao ◽  
Yu Fan ◽  
Yongwen Zhu ◽  
...  

Maintaining an active fatty acid metabolism is important for renal growth, development, and health. We evaluated the effects of anaplerotic and ketogenic energy sources on fatty acid oxidation during stimulation with clofibrate, a pharmacologic peroxisome proliferator-activated receptor α (PPARα) agonist. Suckling newborn pigs (n = 72) were assigned into 8 dietary treatments following a 2 × 4 factorial design: ± clofibrate (0.35%) and diets containing 5% of either (1) glycerol-succinate (GlySuc), (2) tri-valerate (TriC5), (3) tri-hexanoate (TriC6), or (4) tri-2-methylpentanoate (Tri2MPA). Pigs were housed individually and fed the iso-caloric milk replacer diets for 5 d. Renal fatty acid oxidation was measured in vitro in fresh tissue homogenates using [1-14C]-labeled palmitic acid. The oxidation was 30% greater in pig received clofibrate and 25% greater (p < 0.05) in pigs fed the TriC6 diet compared to those fed diets with GlySuc, TriC5, and Tri2MPA. Addition of carnitine also stimulated the oxidation by twofold (p < 0.05). The effects of TriC6 and carnitine on palmitic acid oxidation were not altered by clofibrate stimulation. However, renal fatty acid composition was altered by clofibrate and Tri2MPA. In conclusion, modification of anaplerosis or ketogenesis via dietary substrates had no influence on in vitro renal palmitic acid oxidation induced by PPARα activation.


2001 ◽  
Vol 79 (4) ◽  
pp. 419-424 ◽  
Author(s):  
M Górecka ◽  
M Synak ◽  
L Budohoski ◽  
J Langfort ◽  
S Moskalewski ◽  
...  

The rate of fatty acid uptake, oxidation, and deposition in skeletal muscles in relation to total and unbound to albumin fatty acids concentration in the medium were investigated in the incubated rat soleus muscle. An immunohistochemical technique was applied to demonstrate whether the albumin-bound fatty acid complex from the medium penetrates well within all areas of the muscle strips. It was found that the percentage of incorporation of palmitic acid into intramuscular lipids was fairly constant, independently of the fatty acid concentration in the medium, and amounted to 63–72% for triacylglycerols, 7–12% for diacylglycerols-monoacylglycerols, and 19–26% for phospholipids. Both palmitic acid incorporation into the muscle triacylglycerol stores and its oxidation to CO2closely correlated with an increase in both total and unbound to albumin fatty acid concentrations in the incubation medium. Under conditions of increased total but constant unbound to albumin palmitic acid concentrations, the incorporation of palmitic acid into triacylglycerols and its oxidation to CO2were also increased, but to a lower extent. This supports the hypothesis that the cellular fatty acid metabolism depends not only on the availability of fatty acids unbound to albumin, but also on the availability of fatty acids complexed to albumin.Key words: skeletal muscle, fatty acids, triacylglycerols, phospholipids.


2021 ◽  
Author(s):  
Jihane Akachar ◽  
Catherine Etchebest ◽  
Rachid Eljaoudi ◽  
Azeddine Ibrahimi

Abstract The transmembrane glycoprotein CD36, which is responsible of the metabolic disorders, and the elevated intake of fat induces lipid buildup, is a multifunctional scavenger receptor signaling those functions in high-affinity tissue uptake of long-chain fatty acids. In this study, we used series of molecular dynamics simulations of the wild type and mutants types K164A CD36 protein interacting with one Palmitic acid (PLM) besides simulations of the wild type interacting with the three PLM to find out the mechanism of the functioning of the complex CD36/Fatty acids and the unraveling of the role of the mutation. Additionally we determined whether Lys164, mostly exposed to protein surface, played important roles in fatty acid uptake. These simulations revealed, the conformational changes induced by Lys164 residue and the altered interactions induced by the mutagenesis of surface lysine that was badly influencing the folding, utility, solubility, and stability form of the variant. Furthermore, Lys164 residue provided the structural basis of forming an opening at the region of principal portal for the dissociation of palmitic acid. The results of our simulations revealed hole two fatty acids found in CD36 cavity structure and it was the most preferred to CD36 structure stabilization.


2017 ◽  
Author(s):  
Zsofia Kutil ◽  
Zora Novakova ◽  
Marat Meleshin ◽  
Jana Mikesova ◽  
Mike Schutkowski ◽  
...  

ABSTRACTHistone deacetylase 11 (HDAC11) is a sole member of the class IV HDAC subfamily with negligible intrinsic deacetylation activity. Here we report in vitro profiling of HDAC11 deacylase activities, and our data unequivocally show that the enzyme efficiently removes acyl moieties spanning 8–18 carbons from the side chain nitrogen of the lysine residue of a peptidic substrate. Additionally, N-linked lipoic acid and biotin are removed by the enzyme, although with lower efficacy. Catalytic efficiencies toward dodecanoylated and myristoylated peptides exceed 70,000 M−1s−1 making HDAC11 the most proficient fatty acid deacylase of the HDAC family. Interestingly, HDAC11 is strongly inhibited by free myristic, palmitic and stearic acids with inhibition constants of 6.5 µM, 0.9 µM, and 1.6 µM, respectively. At the same time, its deacylase activity is stimulated more than 2.5-fold by both palmitoyl-coenzyme A and myristoyl-coenzyme A, pointing toward metabolic control of the enzymatic activity by fatty acid metabolites. Our data reveal novel enzymatic activity of HDAC11 that can, in turn, facilitate the uncovering of additional biological functions of the enzyme as well as the design of isoform-specific HDAC inhibitors.


2020 ◽  
Vol 295 (10) ◽  
pp. 3257-3268 ◽  
Author(s):  
Yasunori Watanabe ◽  
Yasushi Tamura ◽  
Chika Kakuta ◽  
Seiya Watanabe ◽  
Toshiya Endo

Eukaryotic cells are compartmentalized to form organelles, whose functions rely on proper phospholipid and protein transport. Here we determined the crystal structure of human VAT-1, a cytosolic soluble protein that was suggested to transfer phosphatidylserine, at 2.2 Å resolution. We found that VAT-1 transferred not only phosphatidylserine but also other acidic phospholipids between membranes in vitro. Structure-based mutational analyses showed the presence of a possible lipid-binding cavity at the interface between the two subdomains, and two tyrosine residues in the flexible loops facilitated phospholipid transfer, likely by functioning as a gate to this lipid-binding cavity. We also found that a basic and hydrophobic loop with two tryptophan residues protruded from the molecule and facilitated binding to the acidic-lipid membranes, thereby achieving efficient phospholipid transfer.


1965 ◽  
Vol 208 (4) ◽  
pp. 607-614 ◽  
Author(s):  
Daniel Porte ◽  
Cecil Entenman

The in vitro metabolism of albumin-bound palmitic acid-1-C14 by segments of small intestine was studied. Tissue uptake, esterification, and oxidation of the fatty acid were measured separately and found to respond independently to altered incubation conditions. Uptake was reversible, and did not require glucose or oxygen. It was not inhibited by fluoride or arsenate. Esterification required both glucose and oxygen, but was unaffected by insulin. It was depressed by succinate and almost completely inhibited by fluoride and arsenate. Oxidation was a minor fate for fatty acid. It was independent of glucose but inhibited by succinate, fluoride, and arsenate. Sodium taurocholate stimulated uptake, but not esterification, as has been previously reported. The possible significance of the reversible tissue uptake reaction is discussed.


Development ◽  
1980 ◽  
Vol 56 (1) ◽  
pp. 157-168
Author(s):  
Thomas J. Flynn ◽  
Nina Hillman

The utilization of fatty acids from the culture medium has been examined in preimplantation mouse embryos developing in vitro. Incorporation of exogenous fatty acid into embryo lipids was examined by culturing 8-cell mouse embryos for 2 h in a medium containing 0·1 HIM [9, 10-3H]palmitic acid (900 mCi/mmol). Lipids were extracted from the embryos, and the total lipid extract was fractionated into various neutral lipid and polar lipid classes by thin-layer chromatography. Most of the radioactivity, over 93 %, was recovered in neutral glycerides (mono- di-, and triacylglycerols). about 2% of the total radioactivity was recovered in other neutral lipid species including fatty acids, fatty alcohols, and sterol esters. The remainder of the radioactivity was recovered in polar lipids. Seventy-four per cent of the polar lipid radioactivity was present in the choline phosphatides. Other labelled phospholipid and glycolipid species included ethanolamine phosphatides, inositol and/or serine phosphatides, sphingomyelin, choline lysophosphatides, sulfatides, cerebrosides, and monoglycosylglycerides. Chemical degradation studies of labelled embryo lipids indicated that the tritium label was entering into embryo lipids as the fatty acid and not via metabolic recycling. The oxidation of exogenous fatty acids by mouse embryos was assessed by incubating variously staged embryos for 4h in medium containing 0·1 mM [U-14C]palmitic acid (50 mCi/mmol) and quantitating the production of 14CO2. The rate of fatty acid oxidation was found to be relatively constant from the unfertilized egg up to the 8-cell stage and then increase significantly between the 8-cell and late blastocyst stages. The results suggest that preimplantation mouse embryos developing in vitro can utilize fatty acids from the medium both for incorporation into embryo lipids and for energy production via oxidation.


Sign in / Sign up

Export Citation Format

Share Document