scholarly journals Chemotactic Migration of Bacteria in Porous Media

2020 ◽  
Author(s):  
T. Bhattacharjee ◽  
D. B. Amchin ◽  
J. A. Ott ◽  
F. Kratz ◽  
S. S. Datta

AbstractChemotactic migration of bacteria—their ability to direct multicellular motion along chemical gradients—is central to processes in agriculture, the environment, and medicine. However, studies are typically performed in homogeneous media, despite the fact that many bacteria inhabit heterogeneous porous media such as soils, sediments, and biological gels. Here, we directly visualize the migration of Escherichia coli populations in 3D porous media. We find that pore-scale confinement is a strong regulator of chemotactic migration. Strikingly, cells use a different primary mechanism to direct their motion in confinement than in bulk liquid. Further, confinement markedly alters the dynamics and morphology of the migrating population—features that can be described by a continuum model, but only when standard motility parameters are substantially altered from their bulk liquid values. Our work thus provides a framework to predict and control the migration of bacteria, and active matter in general, in heterogeneous environments.Statement of SignificanceTypical studies of bacterial motility focus on cells in homogeneous media; however, many bacteria inhabit tight porous media such as soils, sediments, and biological gels. This paper demonstrates how confinement in a porous medium fundamentally alters the chemotactic migration of Escherichia coli. We find that cells use a different primary mechanism to direct their motion in confinement than in bulk liquid. Further, confinement markedly alters the overall dynamics and morphology of a migrating population—features that can be described by a continuum model, but only when standard motility parameters are substantially altered from their bulk liquid values. This work thus provides a framework to predict and control the migration of bacteria, and active matter in general, in heterogeneous porous environments.

Author(s):  
Sabreen A Kamal ◽  
Ishraq A Salih ◽  
Hawraa Jawad Kadhim ◽  
Zainab A Tolaifeh

Red rose or roselle (beauty rose ) is natively known as red tea belong to Malvaceae, it is flowers use traditionally for antihypertensive hepato protective, anticancer,antidiabetic,antibacterial, cytotoxicity and antidiarreal, By preparing red tea from it's flower. In this study, we extract chemical compounds by using two solvent which are Ethanol, Ethyl acetate. so we can extract Anthocyanin which is responsible for red colour of flower with many chemical compounds. then study the effect of these extracts on 5 genera from Enterobacteriacaea which can cause diarrheae (Shigella, Salmonella, Escherichia coli, Proteus and Klebsiella ) by preparing 3 concentrations for each solvent (250, 500, 750 ) mg/ml, and control then compare with two antibiotic (Azereonam 30 mg/ml and Bacitracin 10 mg/ml ) these extracts revealed obvious inhibition zone in bacterial growth.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Chibuzor M. Nsofor ◽  
Mirabeau Y. Tattfeng ◽  
Chijioke A. Nsofor

Abstract Background This study was aimed to determine the prevalence of qnr genes among fluoroquinolone-resistant Escherichia coli (FREC) isolates from Nigeria. Antimicrobial susceptibility testing was performed by disc diffusion technique. Polymerase chain reaction was used to identify Escherichia coli (E. coli) and for the detection of qnr genes. Results A total of 206 non-duplicate E. coli were isolated from 300 clinical specimens analyzed. In all, 30 (14.6%) of these isolates were FREC; the resistance to fluoroquinolones among these 30 FREC showed 80% (24), 86.7% (26), 86.7% (26), 100% (30), 86.7% (26), 93.3% (28) and 86.7% (26) were resistant to pefloxacin, ciprofloxacin, sparfloxacin, levofloxacin, nalidixic acid, ofloxacin and moxifloxacin, respectively. The distribution of FREC among the various sample sources analyzed showed that 14%, 10%, 13.3%, 16.7% and 20% of the isolates came from urine, stool, high vaginal swab, endo cervical swab and wound swab specimens, respectively. More FREC were isolated from female samples 73.3% (22) compared to male samples 26.7% (8) and were more prevalent among the age group 26–35 years (40%). Twenty eight out of the 30 (93.3%) FREC isolates possessed at least one fluoroquinolone resistance gene in the form of qnrA 10 (33.3%) and qnrB 18 (60%), respectively; qnrS was not detected among the FREC isolates analyzed and 13.5% of the isolates possessed both the qnrA and qnrB genes. Phylogenetic analysis showed that these isolates were genetically diverse. Conclusions These findings suggest a possible resistance to fluoroquinolone is of high interest for better management of patients and control of antimicrobial resistance in Nigeria.


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2007 ◽  
Vol 189 (23) ◽  
pp. 8704-8707 ◽  
Author(s):  
Peter Galajda ◽  
Juan Keymer ◽  
Paul Chaikin ◽  
Robert Austin

ABSTRACT Randomly moving but self-propelled agents, such as Escherichia coli bacteria, are expected to fill a volume homogeneously. However, we show that when a population of bacteria is exposed to a microfabricated wall of funnel-shaped openings, the random motion of bacteria through the openings is rectified by tracking (trapping) of the swimming bacteria along the funnel wall. This leads to a buildup of the concentration of swimming cells on the narrow opening side of the funnel wall but no concentration of nonswimming cells. Similarly, we show that a series of such funnel walls functions as a multistage pump and can increase the concentration of motile bacteria exponentially with the number of walls. The funnel wall can be arranged along arbitrary shapes and cause the bacteria to form well-defined patterns. The funnel effect may also have implications on the transport and distribution of motile microorganisms in irregular confined environments, such as porous media, wet soil, or biological tissue, or act as a selection pressure in evolution experiments.


2021 ◽  
Author(s):  
Mengya Zhang ◽  
Lei He ◽  
Meiping Tong

&lt;p&gt;The effects of bacterial flagella as well as their property on the transport and deposition of bacteria were examined by using four types of &lt;em&gt;Escherichia coli &lt;/em&gt;(&lt;em&gt;E.coli&lt;/em&gt;) with or without flagella, as well as with normal or sticky flagella. Packed column, quartz crystal microbalance with dissipation (QCM-D), visible parallel plate flow chamber system, as well as visible flow chamber system packed with porous media system were utilized to investigate the deposition behaviors and the deposition mechanisms of bacteria with different property of flagella. We found that the presence of flagella favored &lt;em&gt;E.coli&lt;/em&gt; deposition onto quartz sand/silica surfaces. Moreover, by changing the porous media porosity and directly observing the deposition process of bacteria in porous media, grain-to-grain contacts were found to be major sites for bacterial deposition. Particularly, flagella could help bacteria swim near and then deposit at grain-to-grain contacts. In addition, we found that due to the stronger adhesive forces, sticky flagella could further enhance bacterial deposition onto quartz sand/silica surfaces. Elution experiments showed that the portion of bacteria with flagella depositing onto secondary energy minima was relatively lower than bacteria without flagella, indicating that flagella could help bacteria attach onto sand surfaces more irreversibly. Clearly, flagella and their property would have obvious influence on the transport and deposition behaviors of bacteria in porous media. By removing the flagella or changing their property, the transport and deposition of bacteria in porous media can be altered. Particularly, bacterial flagella can be removed to facilitate the transport of bacteria in remediation system requiring high mobility of bacteria, while in system requiring the immobilization bacteria in porous media, bacteria with sticky flagella can be employed.&lt;/p&gt;


1982 ◽  
Vol 152 (1) ◽  
pp. 26-34
Author(s):  
M Leduc ◽  
R Kasra ◽  
J van Heijenoort

Various methods of inducing autolysis of Escherichia coli cells were investigated, some being described here for the first time. For the autolysis of growing cells only induction methods interfering with the biosynthesis of peptidoglycan were taken into consideration, whereas with harvested cells autolysis was induced by rapid osmotic or EDTA shock treatments. The highest rates of autolysis were observed after induction by moenomycin, EDTA, or cephaloridine. The different autolyses examined shared certain common properties. In particular, regardless of the induction method used, more or less extensive peptidoglycan degradation was observed, and 10(-2) M Mg2+ efficiently inhibited the autolytic process. However, for other properties a distinction was made between methods used for growing cells and those used for harvested cells. Autolysis of growing cells required RNA, protein, and fatty acid synthesis. No such requirements were observed with shock-induced autolysis performed with harvested cells. Thus, the effects of Mg2+, rifampicin, chloramphenicol, and cerulenin clearly suggest that distinct factors are involved in the control of the autolytic system of E. Coli. Uncoupling agents such as sodium azide, 2,4-dinitrophenol, and carbonyl-cyanide-m-chlorophenyl hydrazone used at their usual inhibiting concentration had no effect on the cephaloridine or shock-induced autolysis.


1978 ◽  
Vol 56 (6) ◽  
pp. 611-617 ◽  
Author(s):  
Joel H. Weiner ◽  
Elke Lohmeier ◽  
Anthony Schryvers

The two thousand Escherichia coli: Col E1 hybrid plasmid strains of the Clarke and Carbon colony bank (Clarke, L. &Carbon, J. (1976) Cell 9, 91–96) were screened by conjugation for those that correct the deficiency of a mutant unable to transport glycerol-3-phosphate. Six strains harbouring recombinant plasmids carrying the glpT region were identified and characterized with respect to plasmid size and transport properties. The initial rate of glycerol-3-phosphate transport in both whole cells and membrane vesicles prepared from such strains was elevated 3- to 10-fold over strains carrying random DNA inserts, whereas the Km of glycerol-3-phosphate transport was near 12 μM in both experimental and control strains. Four of the six glpT carrying plasmid strains demonstrated elevated levels of the anaerobic glycerol-3-phosphate dehydrogenase coded for by the neighbouring glpA gene.We have transferred the glpT hybrid plasmids into a minicell-producing strain of E. coli X1197 and have used the minicells for specific in vitro synthesis of plasmid-coded proteins. The glpT plasmids code for a 40 000 polypeptide which is localized in the periplasmic space. In addition, they code for a membrane-associated protein of 26 000 which may be the carrier polypeptide.


2001 ◽  
Vol 183 (2) ◽  
pp. 570-579 ◽  
Author(s):  
Michal Gropp ◽  
Yael Strausz ◽  
Miriam Gross ◽  
Gad Glaser

ABSTRACT The E. coli RelA protein is a ribosome-dependent (p)ppGpp synthetase that is activated in response to amino acid starvation. RelA can be dissected both functionally and physically into two domains: The N-terminal domain (NTD) (amino acids [aa] 1 to 455) contains the catalytic domain of RelA, and the C-terminal domain (CTD) (aa 455 to 744) is involved in regulating RelA activity. We used mutational analysis to localize sites important for RelA activity and control in these two domains. We inserted two separate mutations into the NTD, which resulted in mutated RelA proteins that were impaired in their ability to synthesize (p)ppGpp. When we caused the CTD inrelA + cells to be overexpressed, (p)ppGpp accumulation during amino acid starvation was negatively affected. Mutational analysis showed that Cys-612, Asp-637, and Cys-638, found in a conserved amino acid sequence (aa 612 to 638), are essential for this negative effect of the CTD. When mutations corresponding to these residues were inserted into the full-length relA gene, the mutated RelA proteins were impaired in their regulation. In attempting to clarify the mechanism through which the CTD regulates RelA activity, we found no evidence for competition for ribosomal binding between the normal RelA and the overexpressed CTD. Results from CyaA complementation experiments of the bacterial two-hybrid system fusion plasmids (G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, Proc. Natl. Acad. Sci. USA 95:5752–5756, 1998) indicated that the CTD (aa 564 to 744) is involved in RelA-RelA interactions. Our findings support a model in which RelA activation is regulated by its oligomerization state.


1995 ◽  
pp. 9-16
Author(s):  
Gerald R. Smith ◽  
Susan K. Amundsen ◽  
Patrick Dabert ◽  
Andrew F. Taylor

Sign in / Sign up

Export Citation Format

Share Document