scholarly journals Protein Plasticity and its Role in Cellular Functions

2020 ◽  
Author(s):  
Sidra Ilyas ◽  
Abdul Manan

ABSTRACTThe contribution of redox active properties of cysteines in intrinsically disordered regions (IDRs) of proteins is not very well acknowledged. Despite of providing structural stability and rigidity, intrinsically disordered cysteines are exceptional redox sensors and the redox status of the protein defines its structure. Experimental evidence suggests that the conformational heterogeneity of cysteines in intrinsically disordered proteins (IDPs) is related to numerous functions including regulation, structural changes and fuzzy complex formation. The unusual plasticity of IDPs make them suitable candidate to interact with many clients under specific conditions. Binding capabilities, dimerization and folding or unfolding nature of IDPs upon interaction with multiple clients assign distinct conformational changes associated with disulfide formation. Here we are going to focus on redox activity of IDPs, their dramatic roles that are not only restricted to cellular redox homeostasis and signaling pathways but also provide antioxidant, anti-apoptotic, binding and interactive power.

2019 ◽  
Vol 20 (21) ◽  
pp. 5501 ◽  
Author(s):  
Izzy Owen ◽  
Frank Shewmaker

Advances in genomics and proteomics have revealed eukaryotic proteomes to be highly abundant in intrinsically disordered proteins that are susceptible to diverse post-translational modifications. Intrinsically disordered regions are critical to the liquid–liquid phase separation that facilitates specialized cellular functions. Here, we discuss how post-translational modifications of intrinsically disordered protein segments can regulate the molecular condensation of macromolecules into functional phase-separated complexes.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ibrahim Yagiz Akbayrak ◽  
Sule Irem Caglayan ◽  
Zilan Ozcan ◽  
Vladimir N. Uversky ◽  
Orkid Coskuner-Weber

: Experiments face challenges in the analysis of intrinsically disordered proteins in solution due to fast conformational changes and enhanced aggregation propensity. Computational studies complement experiments, being widely used in the analyses of intrinsically disordered proteins, especially those positioned at the centers of neurodegenerative diseases. However, recent investigations – including our own – revealed that computer simulations face significant challenges and limitations themselves. In this review, we introduced and discussed some of the scientific challenges and limitations of computational studies conducted on intrinsically disordered proteins. We also outlined the importance of future developments in the areas of computational chemistry and computational physics that would be needed for generating more accurate data for intrinsically disordered proteins from computer simulations. Additional theoretical strategies that can be developed are discussed herein.


Author(s):  
Srinivas Ayyadevara ◽  
Akshatha Ganne ◽  
Meenakshisundaram Balasubramaniam ◽  
Robert J. Shmookler Reis

AbstractA protein’s structure is determined by its amino acid sequence and post-translational modifications, and provides the basis for its physiological functions. Across all organisms, roughly a third of the proteome comprises proteins that contain highly unstructured or intrinsically disordered regions. Proteins comprising or containing extensive unstructured regions are referred to as intrinsically disordered proteins (IDPs). IDPs are believed to participate in complex physiological processes through refolding of IDP regions, dependent on their binding to a diverse array of potential protein partners. They thus play critical roles in the assembly and function of protein complexes. Recent advances in experimental and computational analyses predicted multiple interacting partners for the disordered regions of proteins, implying critical roles in signal transduction and regulation of biological processes. Numerous disordered proteins are sequestered into aggregates in neurodegenerative diseases such as Alzheimer’s disease (AD) where they are enriched even in serum, making them good candidates for serum biomarkers to enable early detection of AD.


2021 ◽  
Author(s):  
Pétur O. Heidarsson ◽  
Ciro Cecconi

Abstract Single-molecule manipulation with optical tweezers has uncovered macromolecular behaviour hidden to other experimental techniques. Recent instrumental improvements have made it possible to expand the range of systems accessible to optical tweezers. Beyond focusing on the folding and structural changes of isolated single molecules, optical tweezers studies have evolved into unraveling the basic principles of complex molecular processes such as co-translational folding on the ribosome, kinase activation dynamics, ligand–receptor binding, chaperone-assisted protein folding, and even dynamics of intrinsically disordered proteins (IDPs). In this mini-review, we illustrate the methodological principles of optical tweezers before highlighting recent advances in studying complex protein conformational dynamics – from protein synthesis to physiological function – as well as emerging future issues that are beginning to be addressed with novel approaches.


2019 ◽  
Vol 73 (12) ◽  
pp. 713-725 ◽  
Author(s):  
Ruth Hendus-Altenburger ◽  
Catarina B. Fernandes ◽  
Katrine Bugge ◽  
Micha B. A. Kunze ◽  
Wouter Boomsma ◽  
...  

Abstract Phosphorylation is one of the main regulators of cellular signaling typically occurring in flexible parts of folded proteins and in intrinsically disordered regions. It can have distinct effects on the chemical environment as well as on the structural properties near the modification site. Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins (IDPs) and the reliability of the analysis depends on an appropriate choice of random coil model. Random coil chemical shifts and sequence correction factors were previously determined for an Ac-QQXQQ-NH2-peptide series with X being any of the 20 common amino acids. However, a matching dataset on the phosphorylated states has so far only been incompletely determined or determined only at a single pH value. Here we extend the database by the addition of the random coil chemical shifts of the phosphorylated states of serine, threonine and tyrosine measured over a range of pH values covering the pKas of the phosphates and at several temperatures (www.bio.ku.dk/sbinlab/randomcoil). The combined results allow for accurate random coil chemical shift determination of phosphorylated regions at any pH and temperature, minimizing systematic biases of the secondary chemical shifts. Comparison of chemical shifts using random coil sets with and without inclusion of the phosphoryl group, revealed under/over estimations of helicity of up to 33%. The expanded set of random coil values will improve the reliability in detection and quantification of transient secondary structure in phosphorylation-modified IDPs.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 109 ◽  
Author(s):  
Sandra S. Sullivan ◽  
Robert O.J. Weinzierl

Many of the proteins involved in key cellular regulatory events contain extensive intrinsically disordered regions that are not readily amenable to conventional structure/function dissection. The oncoprotein c-MYC plays a key role in controlling cell proliferation and apoptosis and more than 70% of the primary sequence is disordered. Computational approaches that shed light on the range of secondary and tertiary structural conformations therefore provide the only realistic chance to study such proteins. Here, we describe the results of several tests of force fields and water models employed in molecular dynamics simulations for the N-terminal 88 amino acids of c-MYC. Comparisons of the simulation data with experimental secondary structure assignments obtained by NMR establish a particular implicit solvation approach as highly congruent. The results provide insights into the structural dynamics of c-MYC1-88, which will be useful for guiding future experimental approaches. The protocols for trajectory analysis described here will be applicable for the analysis of a variety of computational simulations of intrinsically disordered proteins.


2014 ◽  
Vol 206 (5) ◽  
pp. 579-588 ◽  
Author(s):  
Jeffrey A. Toretsky ◽  
Peter E. Wright

The partitioning of intracellular space beyond membrane-bound organelles can be achieved with collections of proteins that are multivalent or contain low-complexity, intrinsically disordered regions. These proteins can undergo a physical phase change to form functional granules or other entities within the cytoplasm or nucleoplasm that collectively we term “assemblage.” Intrinsically disordered proteins (IDPs) play an important role in forming a subset of cellular assemblages by promoting phase separation. Recent work points to an involvement of assemblages in disease states, indicating that intrinsic disorder and phase transitions should be considered in the development of therapeutics.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jing Li ◽  
Jordan T White ◽  
Harry Saavedra ◽  
James O Wrabl ◽  
Hesam N Motlagh ◽  
...  

Intrinsically disordered proteins (IDPs) present a functional paradox because they lack stable tertiary structure, but nonetheless play a central role in signaling, utilizing a process known as allostery. Historically, allostery in structured proteins has been interpreted in terms of propagated structural changes that are induced by effector binding. Thus, it is not clear how IDPs, lacking such well-defined structures, can allosterically affect function. Here, we show a mechanism by which an IDP can allosterically control function by simultaneously tuning transcriptional activation and repression, using a novel strategy that relies on the principle of ‘energetic frustration’. We demonstrate that human glucocorticoid receptor tunes this signaling in vivo by producing translational isoforms differing only in the length of the disordered region, which modulates the degree of frustration. We expect this frustration-based model of allostery will prove to be generally important in explaining signaling in other IDPs.


Sign in / Sign up

Export Citation Format

Share Document