scholarly journals Adaptive plasticity in plant traits increases time to hydraulic failure under drought in a foundation tree

2020 ◽  
Author(s):  
A Challis ◽  
CJ Blackman ◽  
CW Ahrens ◽  
BE Medlyn ◽  
PD Rymer ◽  
...  

SummaryThe viability of forest trees, in response to climate change-associated drought, will depend on their capacity to survive through genetic adaptation and phenotypic plasticity in drought tolerance traits. Genotypes with enhanced plasticity for drought tolerance (adaptive plasticity) will have a greater ability to persist and delay the onset of hydraulic failure.Corymbia calophylla populations from two contrasting climate-origins (warm-dry and cool-wet) were grown under well-watered and chronic soil water deficit treatments in large containers. Hydraulic and allometric traits were measured and then trees were dried-down to critical levels of drought stress.Significant plasticity was detected in the warm-dry population in response to water-deficit, with adjustments in drought tolerance traits that resulted in longer dry-down times from stomatal closure to 88% loss of stem hydraulic conductance (time to hydraulic failure, THF). Plasticity was limited in the cool-wet population, indicating a significant genotype-by-environment interaction in THF.Our findings contribute information on intraspecific variation in key drought tolerance traits and THF. It highlights the need to quantify adaptive capacity in populations of forest trees facing climate change-type drought to improve predictions of forest die-back. Corymbia calophylla may benefit from assisted gene migration by introducing adaptive warm-dry populations into vulnerable cool-wet population regions.

2020 ◽  
Author(s):  
Sebastian Fiedler ◽  
José A.F. Monteiro ◽  
Kristin B. Hulvey ◽  
Rachel J. Standish ◽  
Michael P. Perring ◽  
...  

ABSTRACTEcological restoration increasingly aims at improving ecosystem multifunctionality and making landscapes resilient to future threats, especially in biodiversity hotspots such as Mediterranean-type ecosystems. Successful realisation of such a strategy requires a fundamental mechanistic understanding of the link between ecosystem plant composition, plant traits and related ecosystem functions and services, as well as how climate change affects these relationships. An integrated approach of empirical research and simulation modelling with focus on plant traits can allow this understanding.Based on empirical data from a large-scale restoration project in a Mediterranean-type climate in Western Australia, we developed and validated the spatially explicit simulation model ModEST, which calculates coupled dynamics of nutrients, water and individual plants characterised by traits. We then simulated all possible combinations of eight plant species with different levels of diversity to assess the role of plant diversity and traits on multifunctionality, the provision of six ecosystem functions (covering three ecosystem services), as well as trade-offs and synergies among the functions under current and future climatic conditions.Our results show that multifunctionality cannot fully be achieved because of trade-offs among functions that are attributable to sets of traits that affect functions differently. Our measure of multifunctionality was increased by higher levels of planted species richness under current, but not future climatic conditions. In contrast, single functions were differently impacted by increased plant diversity. In addition, we found that trade-offs and synergies among functions shifted with climate change.Synthesis and application. Our results imply that restoration ecologists will face a clear challenge to achieve their targets with respect to multifunctionality not only under current conditions, but also in the long-term. However, once ModEST is parameterized and validated for a specific restoration site, managers can assess which target goals can be achieved given the set of available plant species and site-specific conditions. It can also highlight which species combinations can best achieve long-term improved multifunctionality due to their trait diversity.


Author(s):  
Lei Ding ◽  
François Chaumont

SummaryContradictory results indicate that aquaporins might facilitate the diffusion of both water and H2O2 during abscisic acid (ABA) triggered stomatal closure. Here, we tested whether maize plasma membrane PIP2;5 aquaporin regulates stomatal closure under water deficit or ABA treatment in intact plants, detached leaves, and peeled epidermis.Transpiration, stomatal conductance and aperture, as well as reactive oxygen species (ROS) in stomatal complexes were studied in maize lines deregulated in PIP2;5 gene expression, under water deficit and/or ABA treatments.In well-watered conditions, the PIP2;5 overexpressing (OE) plants transpired more than the wild-type plants (WT), while no significant difference in transpiration was observed between pip2;5 KO and WT plants. Upon mild-water deficit or low ABA concentration treatment, the transpiration and stomatal conductance decreased more in PIP2;5 OE, and less in pip2;5 KO lines, in comparison with WT plants. Using isolated epidermis, ABA treatment induced faster stomatal closing in PIP2;5 OE lines compared to the WT, while pip2;5 KO stomata were ABA insensitive. These phenotypes were associated with guard cell ROS accumulation.Together, these data indicate that maize PIP2;5 regulates early stomatal closure for water conservation upon a water deficit environment.


2019 ◽  
Vol 39 (6) ◽  
pp. 910-924 ◽  
Author(s):  
Chris J Blackman ◽  
Danielle Creek ◽  
Chelsea Maier ◽  
Michael J Aspinwall ◽  
John E Drake ◽  
...  

Abstract Drought-induced tree mortality alters forest structure and function, yet our ability to predict when and how different species die during drought remains limited. Here, we explore how stomatal control and drought tolerance traits influence the duration of drought stress leading to critical levels of hydraulic failure. We examined the growth and physiological responses of four woody plant species (three angiosperms and one conifer) representing a range of water-use and drought tolerance traits over the course of two controlled drought–recovery cycles followed by an extended dry-down. At the end of the final dry-down phase, we measured changes in biomass ratios and leaf carbohydrates. During the first and second drought phases, plants of all species closed their stomata in response to decreasing water potential, but only the conifer species avoided water potentials associated with xylem embolism as a result of early stomatal closure relative to thresholds of hydraulic dysfunction. The time it took plants to reach critical levels of water stress during the final dry-down was similar among the angiosperms (ranging from 39 to 57 days to stemP88) and longer in the conifer (156 days to stemP50). Plant dry-down time was influenced by a number of factors including species stomatal-hydraulic safety margin (gsP90 – stemP50), as well as leaf succulence and minimum stomatal conductance. Leaf carbohydrate reserves (starch) were not depleted at the end of the final dry-down in any species, irrespective of the duration of drought. These findings highlight the need to consider multiple structural and functional traits when predicting the timing of hydraulic failure in plants.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0254599
Author(s):  
Yoko Osone ◽  
Shoji Hashimoto ◽  
Tanaka Kenzo

The effects of climate change on forest ecosystems take on increasing importance more than ever. Information on plant traits is a powerful predictor of ecosystem dynamics and functioning. We reviewed the major ecological traits, such as foliar gas exchange and nutrients, xylem morphology and drought tolerance, of Cryptomeria japonica and Chamaecyparis obtusa, which are major timber species in East Asia, especially in Japan, by using a recently developed functional trait database for both species (SugiHinokiDB). Empirically, C. obtusa has been planted under drier conditions, whereas C. japonica, which grows faster but thought to be less drought tolerant, has been planted under wetter conditions. Our analysis generally support the empirical knowledge: The maximum photosynthetic rate, stomatal conductance, foliar nutrient content and soil-to-foliage hydraulic conductance were higher in C. japonica than in C. obtusa. In contrast, the foliar turgor loss point and xylem pressure corresponding to 50% conductivity, which indicate drought tolerance, were lower in C. obtusa and are consistent with the drier habitat of C. obtusa. Ontogenetic shifts were also observed; as the age and height of the trees increased, foliar nutrient concentrations, foliar minimum midday water potential and specific leaf area decreased in C. japonica, suggesting that nutrient and water limitation occurs with the growth. In C. obtusa, the ontogenetic shits of these foliar traits were less pronounced. Among the Cupressaceae worldwide, the drought tolerance of C. obtusa, as well as C. japonica, was not as high. This may be related to the fact that the Japanese archipelago has historically not been subjected to strong dryness. The maximum photosynthetic rate showed intermediate values within the family, indicating that C. japonica and C. obtusa exhibit relatively high growth rates in the Cupressaceae family, and this is thought to be the reason why they have been selected as economically suitable timber species in Japanese forestry. This study clearly demonstrated that the plant trait database provides us a promising opportunity to verify out empirical knowledge of plantation management and helps us to understand effect of climate change on plantation forests by using trait-based modelling.


2016 ◽  
Vol 67 (1) ◽  
pp. 99 ◽  
Author(s):  
Magdalena Ruíz ◽  
Miguel Quemada ◽  
Rosa M. García ◽  
José M. Carrillo ◽  
Elena Benavente

Thermal imaging has been used to evaluate the response to drought and warm temperatures in a collection of Brachypodium distachyon lines adapted to varied environmental conditions. Thermographic records were able to separate lines from contrasting rainfall regimes. Genotypes from dryer environments showed warmer leaves under water deficit, which suggested that decreased evapotranspiration was related to a more intense stomatal closure. When irrigated and under high temperature conditions, drought-adapted lines showed cooler leaves than lines from wetter zones. The consistent, inverse thermographic response of lines to water stress and heat validates the reliability of this method to assess drought tolerance in this model cereal. It additionally supports the hypothesis that stomatal-based mechanisms are involved in natural variation for drought tolerance in Brachypodium. The study further suggests that these mechanisms are not constitutive but likely related to a more efficient closing response to avoid dehydration in adapted genotypes. Higher leaf temperature under water deficit seems a dependable criterion of drought tolerance, not only in B. distachyon but also in the main cereal crops and related grasses where thermography can facilitate high-throughput preliminary screening of tolerant materials.


2021 ◽  
Author(s):  
Yoko Osone ◽  
Shoji Hashimoto ◽  
Kenzo Tanaka

The effects of climate change on forest ecosystems take on increasing importance more than ever. Information on plant traits is a powerful predictor of ecosystem dynamics and functioning. We reviewed the major ecological traits, such as foliar gas exchange and nutrients, xylem morphology and drought tolerance, of Cryptomeria japonica and Chamaecyparis obtusa , which are major timber species in East Asia, especially in Japan, by using a recently developed functional trait database for both species (SugiHinokiDB). Empirically, C. obtusa has been planted under drier conditions, whereas C. japonica has been planted under wetter conditions. Our analyses revealed followings: The maximum photosynthetic rate, stomatal conductance, foliar nutrient content and soil-to-foliage hydraulic conductance were higher in C. japonica than in C. obtusa and were consistent with the higher growth rate of C. japonica. In contrast, the foliar turgor loss point and xylem pressure corresponding to 50% conductivity, which indicate drought tolerance, were lower in C. obtusa than in C. japonica and are consistent with the drier habitat of C. obtusa. Ontogenetic shifts were also observed; as the age and height of the trees increased, many foliar nutrient concentrations decreased, and the foliar minimum midday water potential and specific leaf area also decreased. This suggests that an ontogenetic reduction in photosynthesis occurred due to an increase in drought stress with tree height and age. However, among the Cupressaceae worldwide, the drought tolerance of C. japonica and C. obtusa is not as high. This may be related to the fact that the Japanese archipelago has historically not been subjected to strong dryness. The maximum photosynthetic rate showed intermediate values within the family, indicating that C. japonica and C. obtusa exhibit relatively high growth rates in the Cupressaceae family, and this is thought to be the reason why they have been selected as economically suitable timber species in Japanese forestry. This study clearly demonstrated that the plant trait database provides us a promising opportunity to verify out empirical knowledge of plantation management and helps us to understand effect of climate change on plantation forests by using trait-based modelling.


2003 ◽  
Vol 26 (3) ◽  
pp. 443-450 ◽  
Author(s):  
T. J. BRODRIBB ◽  
N. M. HOLBROOK ◽  
E. J. EDWARDS ◽  
M. V. GUTIÉRREZ

2019 ◽  
Vol 46 (3) ◽  
pp. 286 ◽  
Author(s):  
Christopher J. Lucani ◽  
Timothy J. Brodribb ◽  
Greg Jordan ◽  
Patrick J. Mitchell

Understanding intraspecific variation in the vulnerability of the xylem to hydraulic failure during drought is critical in predicting the response of forest tree species to climate change. However, few studies have assessed intraspecific variation in this trait, and a likely limitation is the large number of measurements required to generate the standard ‘vulnerability curve’ used to assess hydraulic failure. Here we explore an alternative approach that requires fewer measurements, and assess within species variation in leaf xylem vulnerability in Eucalyptus globulus Labill., an ecologically and economically important species with known genetic variation in drought tolerance. Using this approach we demonstrate significant phenotypic differences and evidence of plasticity among two provenances with contrasting drought tolerance.


2012 ◽  
Vol 39 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Maria Balota ◽  
Steve McGrath ◽  
Thomas G. Isleib ◽  
Shyam Tallury

Abstract Water deficit, i.e., rainfall amounts and distribution, is the most common abiotic stress that limits peanut production worldwide. Even though extensive research efforts have been made to improve drought tolerance in peanut, performance of genotypes largely depends upon the environment in which they grow. Based on greenhouse experiments, it has been hypothesized that stomata closure under high vapor pressure deficit (VPD) is a mechanism of soil water conservation and it has been shown that genotypic variation for the response of transpiration rate to VPD in peanut exists. The objective of this study was to determine the relationship between stomatal conductance (gs) and VPD for field grown peanut in Virginia-Carolina (VC) rainfed environments. In 2009, thirty virginia-type peanut cultivars and advanced breeding lines were evaluated for gs at several times before and after rain events, including a moisture stress episode. In 2010, eighteen genotypes were evaluated for gs under soil water deficit. In 2009, VPD ranged from 1.3 to 4.2 kPa and in 2010 from 1.78 to 3.57 kPa. Under water deficit, genotype and year showed a significant effect on gs (P  =  0.0001), but the genotype × year interaction did not. During the water deficit episodes while recorded gs values were relatively high, gs was negatively related to VPD (R2  =  0.57, n  =  180 in 2009; R2  =  0.47, n  =  108 in 2010), suggesting that stomata closure is indeed a water conservation mechanism for field grown peanut. However, a wide range of slopes among genotype were observed in both years. Genotypes with significant negative relationships of gs and VPD under water deficit in both years were Florida Fancy, Gregory, N04074FCT, NC-V11, and VA-98R. While Florida Fancy, Gregory, and NC-V11 are known to be high yielding cultivars, VA-98R and line N04074FCT are not. The benefit of stomatal closure during drought episodes in the VC environments is further discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document