scholarly journals Whole-organism eQTL mapping at cellular resolution with single-cell sequencing

2020 ◽  
Author(s):  
Eyal Ben-David ◽  
James Boocock ◽  
Longhua Guo ◽  
Stefan Zdraljevic ◽  
Joshua S Bloom ◽  
...  

Genetic regulation of gene expression underlies variation in disease risk and other complex traits. The effect of expression quantitative trait loci (eQTLs) varies across cell types; however, the complexity of mammalian tissues makes studying cell-type eQTLs highly challenging. We developed a novel approach in the model nematode Caenorhabditis elegans that uses single cell RNA sequencing to map eQTLs at cellular resolution in a single one-pot experiment. We mapped eQTLs across cell types in an extremely large population of genetically distinct C. elegnas individuals. We found cell-type-specific trans-eQTL hotspots that affect the expression of core pathways in the relevant cell types. Finally, we found single-cell-specific eQTL effects in the nervous system, including an eQTL with opposite effects in two individual neurons. Our results show that eQTL effects can be specific down to the level of single cells.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Eyal Ben-David ◽  
James Boocock ◽  
Longhua Guo ◽  
Stefan Zdraljevic ◽  
Joshua S Bloom ◽  
...  

Genetic regulation of gene expression underlies variation in disease risk and other complex traits. The effect of expression quantitative trait loci (eQTLs) varies across cell types; however, the complexity of mammalian tissues makes studying cell-type eQTLs highly challenging. We developed a novel approach in the model nematodeCaenorhabditis elegansthat uses single-cell RNA sequencing to map eQTLs at cellular resolution in a single one-pot experiment. We mapped eQTLs across cell types in an extremely large population of genetically distinctC. elegansindividuals. We found cell-type-specifictranseQTL hotspots that affect the expression of core pathways in the relevant cell types. Finally, we found single-cell-specific eQTL effects in the nervous system, including an eQTL with opposite effects in two individual neurons. Our results show that eQTL effects can be specific down to the level of single cells.


2020 ◽  
Author(s):  
Feng Tian ◽  
Fan Zhou ◽  
Xiang Li ◽  
Wenping Ma ◽  
Honggui Wu ◽  
...  

SummaryBy circumventing cellular heterogeneity, single cell omics have now been widely utilized for cell typing in human tissues, culminating with the undertaking of human cell atlas aimed at characterizing all human cell types. However, more important are the probing of gene regulatory networks, underlying chromatin architecture and critical transcription factors for each cell type. Here we report the Genomic Architecture of Cells in Tissues (GeACT), a comprehensive genomic data base that collectively address the above needs with the goal of understanding the functional genome in action. GeACT was made possible by our novel single-cell RNA-seq (MALBAC-DT) and ATAC-seq (METATAC) methods of high detectability and precision. We exemplified GeACT by first studying representative organs in human mid-gestation fetus. In particular, correlated gene modules (CGMs) are observed and found to be cell-type-dependent. We linked gene expression profiles to the underlying chromatin states, and found the key transcription factors for representative CGMs.HighlightsGenomic Architecture of Cells in Tissues (GeACT) data for human mid-gestation fetusDetermining correlated gene modules (CGMs) in different cell types by MALBAC-DTMeasuring chromatin open regions in single cells with high detectability by METATACIntegrating transcriptomics and chromatin accessibility to reveal key TFs for a CGM


2018 ◽  
Author(s):  
Douglas Abrams ◽  
Parveen Kumar ◽  
R. Krishna Murthy Karuturi ◽  
Joshy George

AbstractBackgroundThe advent of single cell RNA sequencing (scRNA-seq) enabled researchers to study transcriptomic activity within individual cells and identify inherent cell types in the sample. Although numerous computational tools have been developed to analyze single cell transcriptomes, there are no published studies and analytical packages available to guide experimental design and to devise suitable analysis procedure for cell type identification.ResultsWe have developed an empirical methodology to address this important gap in single cell experimental design and analysis into an easy-to-use tool called SCEED (Single Cell Empirical Experimental Design and analysis). With SCEED, user can choose a variety of combinations of tools for analysis, conduct performance analysis of analytical procedures and choose the best procedure, and estimate sample size (number of cells to be profiled) required for a given analytical procedure at varying levels of cell type rarity and other experimental parameters. Using SCEED, we examined 3 single cell algorithms using 48 simulated single cell datasets that were generated for varying number of cell types and their proportions, number of genes expressed per cell, number of marker genes and their fold change, and number of single cells successfully profiled in the experiment.ConclusionsBased on our study, we found that when marker genes are expressed at fold change of 4 or more than the rest of the genes, either Seurat or Simlr algorithm can be used to analyze single cell dataset for any number of single cells isolated (minimum 1000 single cells were tested). However, when marker genes are expected to be only up to fC 2 upregulated, choice of the single cell algorithm is dependent on the number of single cells isolated and proportion of rare cell type to be identified. In conclusion, our work allows the assessment of various single cell methods and also aids in examining the single cell experimental design.


2021 ◽  
Author(s):  
Julia Eve Olivieri ◽  
Roozbeh Dehghannasiri ◽  
Peter Wang ◽  
SoRi Jang ◽  
Antoine de Morree ◽  
...  

More than 95% of human genes are alternatively spliced. Yet, the extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach that is agnostic to transcript annotation, to detect cell-type-specific regulated splicing in > 110K carefully annotated single cells from 12 human tissues. Using 10x data for discovery, 9.1% of genes with computable SpliZ scores are cell-type specifically spliced. These results are validated with RNA FISH, single cell PCR, and in high throughput with Smart-seq2. Regulated splicing is found in ubiquitously expressed genes such as actin light chain subunit MYL6 and ribosomal protein RPS24, which has an epithelial-specific microexon. 13% of the statistically most variable splice sites in cell-type specifically regulated genes are also most variable in mouse lemur or mouse. SpliZ analysis further reveals 170 genes with regulated splicing during sperm development using, 10 of which are conserved in mouse and mouse lemur. The statistical properties of the SpliZ allow model-based identification of subpopulations within otherwise indistinguishable cells based on gene expression, illustrated by subpopulations of classical monocytes with stereotyped splicing, including an un-annotated exon, in SAT1, a Diamine acetyltransferase. Together, this unsupervised and annotation-free analysis of differential splicing in ultra high throughput droplet-based sequencing of human cells across multiple organs establishes splicing is regulated cell-type-specifically independent of gene expression.


2021 ◽  
Author(s):  
Rujin Wang ◽  
Danyu Lin ◽  
Yuchao Jiang

More than a decade of genome-wide association studies (GWASs) have identified genetic risk variants that are significantly associated with complex traits. Emerging evidence suggests that the function of trait-associated variants likely acts in a tissue- or cell-type-specific fashion. Yet, it remains challenging to prioritize trait-relevant tissues or cell types to elucidate disease etiology. Here, we present EPIC (cEll tyPe enrIChment), a statistical framework that relates large-scale GWAS summary statistics to cell-type-specific omics measurements from single-cell sequencing. We derive powerful gene-level test statistics for common and rare variants, separately and jointly, and adopt generalized least squares to prioritize trait-relevant tissues or cell types while accounting for the correlation structures both within and between genes. Using enrichment of loci associated with four lipid traits in the liver and enrichment of loci associated with three neurological disorders in the brain as ground truths, we show that EPIC outperforms existing methods. We extend our framework to single-cell transcriptomic data and identify cell types underlying type 2 diabetes and schizophrenia. The enrichment is replicated using independent GWAS and single-cell datasets and further validated using PubMed search and existing bulk case-control testing results.


2018 ◽  
Author(s):  
Nikos Konstantinides ◽  
Katarina Kapuralin ◽  
Chaimaa Fadil ◽  
Luendreo Barboza ◽  
Rahul Satija ◽  
...  

SummaryTranscription factors regulate the molecular, morphological, and physiological characters of neurons and generate their impressive cell type diversity. To gain insight into general principles that govern how transcription factors regulate cell type diversity, we used large-scale single-cell mRNA sequencing to characterize the extensive cellular diversity in the Drosophila optic lobes. We sequenced 55,000 single optic lobe neurons and glia and assigned them to 52 clusters of transcriptionally distinct single cells. We validated the clustering and annotated many of the clusters using RNA sequencing of characterized FACS-sorted single cell types, as well as marker genes specific to given clusters. To identify transcription factors responsible for inducing specific terminal differentiation features, we used machine-learning to generate a ‘random forest’ model. The predictive power of the model was confirmed by showing that two transcription factors expressed specifically in cholinergic (apterous) and glutamatergic (traffic-jam) neurons are necessary for the expression of ChAT and VGlut in many, but not all, cholinergic or glutamatergic neurons, respectively. We used a transcriptome-wide approach to show that the same terminal characters, including but not restricted to neurotransmitter identity, can be regulated by different transcription factors in different cell types, arguing for extensive phenotypic convergence. Our data provide a deep understanding of the developmental and functional specification of a complex brain structure.


2021 ◽  
Author(s):  
Julien Bryois ◽  
Daniela Calini ◽  
Will Macnair ◽  
Lynette Foo ◽  
Eduard Urich ◽  
...  

Most expression quantitative trait loci (eQTL) studies to date have been performed in heterogeneous brain tissues as opposed to specific cell types. To investigate the genetics of gene expression in adult human cell types from the central nervous system (CNS), we performed an eQTL analysis using single nuclei RNA-seq from 196 individuals in eight CNS cell types. We identified 6108 eGenes, a substantial fraction (43%, 2620 out of 6108) of which show cell-type specific effects, with strongest effects in microglia. Integration of CNS cell-type eQTLs with GWAS revealed novel relationships between expression and disease risk for neuropsychiatric and neurodegenerative diseases. For most GWAS loci, a single gene colocalized in a single cell type providing new clues into disease etiology. Our findings demonstrate substantial contrast in genetic regulation of gene expression among CNS cell types and reveal genetic mechanisms by which disease risk genes influence neurological disorders.


Author(s):  
Chongyuan Luo ◽  
Hanqing Liu ◽  
Fangming Xie ◽  
Ethan J. Armand ◽  
Kimberly Siletti ◽  
...  

ABSTRACTSingle-cell technologies enable measure of unique cellular signatures, but are typically limited to a single modality. Computational approaches allow integration of diverse single-cell datasets, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells in tissues, we devised single-nucleus methylCytosine, Chromatin accessibility and Transcriptome sequencing (snmC2T-seq) and applied it to post-mortem human frontal cortex tissue. We developed a computational framework to validate fine-grained cell types using multi-modal information and assessed the effectiveness of computational integration methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling prediction of cell types with causal roles in disease.


2017 ◽  
Author(s):  
Aparna Bhaduri ◽  
Tomasz J. Nowakowski ◽  
Alex A. Pollen ◽  
Arnold R. Kriegstein

AbstractHigh throughput methods for profiling the transcriptomes of single cells have recently emerged as transformative approaches for large-scale population surveys of cellular diversity in heterogeneous primary tissues. Efficient generation of such an atlas will depend on sufficient sampling of the diverse cell types while remaining cost-effective to enable a comprehensive examination of organs, developmental stages, and individuals. To examine the relationship between cell number and transcriptional heterogeneity in the context of unbiased cell type classification, we explicitly explored the population structure of a publically available 1.3 million cell dataset from the E18.5 mouse brain. We propose a computational framework for inferring the saturation point of cluster discovery in a single cell mRNA-seq experiment, centered around cluster preservation in downsampled datasets. In addition, we introduce a “complexity index”, which characterizes the heterogeneity of cells in a given dataset. Using Cajal-Retzius cells as an example of a limited complexity dataset, we explored whether biological distinctions relate to technical clustering. Surprisingly, we found that clustering distinctions carrying biologically interpretable meaning are achieved with far fewer cells (20,000). Together, these findings suggest that most of the biologically interpretable insights from the 1.3 million cells can be recapitulated by analyzing 50,000 randomly selected cells, indicating that instead of profiling few individuals at high “cellular coverage”, the much anticipated cell atlasing studies may instead benefit from profiling more individuals, or many time points at lower cellular coverage.Recent efforts seek to create a comprehensive cell atlas of the human body1,2 Current technology, however, makes it precipitously expensive to perform analysis of every cell. Therefore, designing effective sampling strategies be critical to generate a working atlas in an efficient, cost-effective, and streamlined manner. The advent of single cell and single nucleus mRNA sequencing (RNAseq) in droplet format3,4 now enables large scale sampling of cells from any tissue, and a recently released publicly available dataset of 1.3 million single cells from the E18.5 mouse brain generated with the 10X Chromium5 provides an opportunity to explore the relationship between population structure and the number of sampled cells necessary to reveal the underlying diversity of cell types. Here, we present a framework for how researchers can evaluate whether a dataset has reached saturation, and we estimate how many cells would be required to generate an atlas of the sample analyzed here. This framework can be applied to any organ or cell type specific atlas for any organism.


2021 ◽  
Author(s):  
Wenxuan Deng ◽  
Biqing Zhu ◽  
Seyoung Park ◽  
Tomokazu S. Sumida ◽  
Avraham Unterman ◽  
...  

Compared with sequencing-based global genomic profiling, cytometry labels targeted surface markers on millions of cells in parallel either by conjugated rare earth metal particles or Unique Molecular Identifier (UMI) barcodes. Correct annotation of these cells to specific cell types is a key step in the analysis of these data. However, there is no computational tool that automatically annotates single cell proteomics data for cell type inference. In this manuscript, we propose an automated single cell proteomics data annotation approach called ProtAnno to facilitate cell type assignments without laborious manual gating. ProtAnno is designed to incorporate information from annotated single cell RNA-seq (scRNA-seq), CITE-seq, and prior data knowledge (which can be imprecise) on biomarkers for different cell types. We have performed extensive simulations to demonstrate the accuracy and robustness of ProtAnno. For several single cell proteomics datasets that have been manually labeled, ProtAnno was able to correctly label most single cells. In summary, ProtAnno offers an accurate and robust tool to automate cell type annotations for large single cell proteomics datasets, and the analysis of such annotated cell types can offer valuable biological insights.


Sign in / Sign up

Export Citation Format

Share Document