scholarly journals Early developmental asymmetries in cell lineage trees in living individuals

2020 ◽  
Author(s):  
Liana Fasching ◽  
Yeongjun Jang ◽  
Simone Tomasi ◽  
Jeremy Schreiner ◽  
Livia Tomasini ◽  
...  

AbstractPost-zygotic mosaic mutations can be used to track cell lineages in humans. By using cell cloning and induced pluripotent cell lines, we analyzed early cell lineages in two living individuals (a patient and a control), and a postmortem human specimen. Of ten reconstructed post-zygotic divisions, none resulted in balanced contributions of daughter lineages to tissues. In both living individuals one of two lineages from the first cleavage was dominant across tissues, with 90% frequency in blood. We propose that the efficiency of DNA repair contributes to lineage imbalance. Allocation of lineages in postmortem brain correlated with anterior-posterior axis, associating lineage history with cell fate choices in embryos. Recurrence of germline variants as mosaic suggested that certain loci may be particularly susceptible to mutagenesis. We establish a minimally invasive framework for defining cell lineages in any living individual, which paves the way for studying their relevance in health and disease.

Science ◽  
2021 ◽  
Vol 371 (6535) ◽  
pp. 1245-1248
Author(s):  
Liana Fasching ◽  
Yeongjun Jang ◽  
Simone Tomasi ◽  
Jeremy Schreiner ◽  
Livia Tomasini ◽  
...  

Mosaic mutations can be used to track cell lineages in humans. We used cell cloning to analyze embryonic cell lineages in two living individuals and a postmortem human specimen. Of 10 reconstructed postzygotic divisions, none resulted in balanced contributions of daughter lineages to tissues. In both living individuals, one of two lineages from the first cleavage was dominant across tissues, with 90% frequency in blood. We propose that the efficiency of DNA repair contributes to lineage imbalance. Allocation of lineages in postmortem brain correlated with anterior-posterior axis, associating lineage history with cell fate choices in embryos. We establish a minimally invasive framework for defining cell lineages in any living individual, which paves the way for studying their relevance in health and disease.


2018 ◽  
Author(s):  
Damien G. Hicks ◽  
Terence P. Speed ◽  
Mohammed Yassin ◽  
Sarah M. Russell

AbstractNew approaches to lineage tracking allow the study of cell differentiation over many generations of cells during development in multicellular organisms. Understanding the variability observed in these lineage trees requires new statistical methods. Whereas invariant cell lineages, such as that for the nematode Caenorhabditis elegans, can be described using a lineage map, defined as the fixed pattern of phenotypes overlaid onto the binary tree structure, the variability of cell lineages from higher organisms makes it impossible to draw a single lineage map. Here, we introduce lineage variability maps which describe the pattern of second-order variation throughout the lineage tree. These maps can be undirected graphs of the partial correlations between every lineal position or directed graphs showing the dynamics of bifurcated patterns in each subtree. By using the symmetry invariance of a binary tree to develop a generalized spectral analysis for cell lineages, we show how to infer these graphical models for lineages of any depth from sample sizes of only a few pedigrees. When tested on pedigrees from C. elegans expressing a marker for pharyngeal differentiation potential, the maps recover essential features of the known lineage map. When applied to highly-variable pedigrees monitoring cell size in T lymphocytes, the maps show how most of the phenotype is set by the founder naive T cell. Lineage variability maps thus elevate the concept of the lineage map to the population level, addressing questions about the potency and dynamics of cell lineages and providing a way to quantify the progressive restriction of cell fate with increasing depth in the tree.Author summaryMulticellular organisms develop from a single fertilized egg by sequential cell divisions. The progeny from these divisions adopt different traits that are transmitted and modified through many generations. By tracking how cell traits change with each successive cell division throughout the family, or lineage, tree, it has been possible to understand where and how these modifications are controlled at the single-cell level, thereby addressing questions about, for example, the developmental origin of tissues, the sources of differentiation in immune cells, or the relationship between primary tumors and metastases. Such lineages often show large variability, with apparently identical founder cells giving rise to different patterns of descendants. Fundamental scientific questions, such as about the range of possible cell types a cell can give rise to, are often about this variability. To characterize this variation, and thus understand the lineage at the population level, we introduce lineage variability maps. Using data from worm and mammalian cell lineages we show how these maps provide quantifiable answers to questions about any developing lineage, such as the potency of founder cells and the progressive restriction of cell fate at each stage in the tree.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 943-952 ◽  
Author(s):  
X. Cui ◽  
C.Q. Doe

Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast ‘sublineages’), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.


Studies of the role of cell lineage in development began in the latter part of the 19th century, fell into decline in the early part of the 20th, and were revived about 20 years ago. This recent revival was accompanied by the introduction of new and powerful analytical techniques. Concepts of importance for cell lineage studies include the principal division modes by which a cell may give rise to its descendant clone (proliferative, stem cell and diversifying); developmental determinacy , or indeterminacy , which refer to the degree to which the normal cleavage pattern of the early embryo and the developmental fate of its individual cells is, or is not, the same in specimen after specimen; commitment , which refers to the restriction of the developmental potential of a pluripotent embryonic cell; and equivalence group , which refers to two or more equivalently pluripotent cell clones that normally take on different fates but of which under abnormal conditions one clone can take on the fate of another. Cell lineage can be inferred to have a causative role in developmental cell fate in embryos in which induced changes in cell division patterns lead to changes in cell fate. Moreover, such a causative role of cell lineage is suggested by cases where homologous cell types characteristic of a symmetrical and longitudinally metameric body plan arise via homologous cell lineages. The developmental pathways of commitment to particular cell fates proceed according to a mixed typologic and topographic hierarchy, which appears to reflect an evolutionary compromise between maximizing the ease of ordering the spatial distribution of the determinants of commitment and minimizing the need for migration of differentially committed embryonic cells. Comparison of the developmental cell lineages in leeches and insects indicates that the early course of embryogenesis is radically different in these phyletically related taxa. This evolutionary divergence of the course of early embryogenesis appears to be attributable to an increasing prevalence of polyclonal rather than monoclonal commitment in the phylogenetic line leading from an annelid-like ancestor to insects.


2001 ◽  
Vol 194 (7) ◽  
pp. 991-1002 ◽  
Author(s):  
Ana C. Jaleco ◽  
Hélia Neves ◽  
Erik Hooijberg ◽  
Paula Gameiro ◽  
Nuno Clode ◽  
...  

Notch signaling is known to differentially affect the development of lymphoid B and T cell lineages, but it remains unclear whether such effects are specifically dependent on distinct Notch ligands. Using a cell coculture assay we observed that the Notch ligand Delta-1 completely inhibits the differentiation of human hematopoietic progenitors into the B cell lineage while promoting the emergence of cells with a phenotype of T cell/natural killer (NK) precursors. In contrast, Jagged-1 did not disturb either B or T cell/NK development. Furthermore, cells cultured in the presence of either Delta-1 or Jagged-1 can acquire a phenotype of NK cells, and Delta-1, but not Jagged-1, permits the emergence of a de novo cell population coexpressing CD4 and CD8. Our results thus indicate that distinct Notch ligands can mediate differential effects of Notch signaling and provide a useful system to further address cell-fate decision processes in lymphopoiesis.


2019 ◽  
Author(s):  
Meng Yuan ◽  
Xujiang Yang ◽  
Jinghua Lin ◽  
Xiaolong Cao ◽  
Feng Chen ◽  
...  

ABSTRACTThe developmental cell lineage tree, which records every cell division event and the terminal developmental state of each single cell, is one of the most important traits of multicellular organisms, as well as key to many significant unresolved questions in biology. Recent technological breakthroughs are paving the way for direct determination of cell lineage trees, yet a general framework for the computational analysis of lineage trees, in particular an algorithm to compare two lineage trees, is still lacking. Based on previous findings that the same developmental program can be invoked by different cells on the lineage tree to produce highly similar subtrees, we designedDevelopmental CellLineageTreeAlignment (DELTA), an algorithm that exhaustively searches for lineage trees with phenotypic resemblance in lineal organization of terminal cells, meanwhile resolving detailed correspondence between individual cells. Using simulated and nematode lineage trees, we demonstrated DELTA’s capability of revealing similarities of developmental programs by lineal resemblances. Moreover, DELTA successfully identifies gene deletion-triggered homeotic cell fate transformations, reveals functional relationship between mutants by quantifying their lineal similarities, and finds the evolutionary correspondence between cell types defined non-uniformly for different species. DELTA establishes novel foundation for comparative study of lineage trees, much like sequence alignment algorithm for biological sequences, and along with the increase of lineage tree data, will likely bring unique insights for the myriads of important questions surrounding cell lineage trees.


Open Biology ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 180243 ◽  
Author(s):  
Kun Liu ◽  
Ke Xu ◽  
Yan Song

Precise specification of cell fate or identity within stem cell lineages is critical for ensuring correct stem cell lineage progression and tissue homeostasis. Failure to specify cell fate or identity in a timely and robust manner can result in developmental abnormalities and diseases such as cancer. However, the molecular basis of timely cell fate/identity specification is only beginning to be understood. In this review, we discuss key regulatory strategies employed in cell fate specification and highlight recent results revealing how timely and robust cell fate/identity commitment is achieved through transcriptional control.


Science ◽  
2021 ◽  
Vol 372 (6538) ◽  
pp. eabb3099
Author(s):  
Ke-Huan K. Chow ◽  
Mark W. Budde ◽  
Alejandro A. Granados ◽  
Maria Cabrera ◽  
Shinae Yoon ◽  
...  

During multicellular development, spatial position and lineage history play powerful roles in controlling cell fate decisions. Using a serine integrase–based recording system, we engineered cells to record lineage information in a format that can be read out in situ. The system, termed integrase-editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states. It reconstructed lineage trees in stem cells and enabled simultaneous analysis of single-cell clonal history, spatial position, and gene expression in Drosophila brain sections. These results establish a foundation for microscopy-readable lineage recording and analysis in diverse systems.


Development ◽  
2021 ◽  
Author(s):  
Sophie Colombo ◽  
Valérie Petit ◽  
Roselyne Y. Wagner ◽  
Delphine Champeval ◽  
Ichiro Yajima ◽  
...  

The canonical Wnt/β-catenin pathway governs a multitude of developmental processes in various cell lineages, including the melanocyte lineage. Indeed, β-catenin regulates Mitf-M transcription, the master regulator of this lineage. The first wave of melanocytes to colonize the skin is directly derived from neural crest cells, while the second wave of melanocytes is derived from Schwann-cell precursors (SCPs). We investigated the influence of β-catenin in the development of melanocytes of the first and second waves by generating mice expressing a constitutively active form of β-catenin in cells expressing tyrosinase. Constitutive activation of β-catenin did not affect the development of truncal melanoblasts but led to marked hyperpigmentation of the paws. By activating β-catenin at various stages of development (E8.5-E11.5), we showed that the activation of β-catenin in bipotent SCPs favored melanoblast specification at the expense of Schwann cells in the limbs within a specific temporal window. Furthermore, in vitro hyperactivation of the Wnt/β-catenin pathway, which is required for melanocyte development, induces activation of Mitf-M, in turn repressing FoxD3 expression. In conclusion, β-catenin overexpression promotes SCP cell fate decisions towards the melanocyte lineage.


2021 ◽  
Vol 22 (9) ◽  
pp. 4504
Author(s):  
Ayumi Matsuzawa ◽  
Jiyoung Lee ◽  
So Nakagawa ◽  
Johbu Itoh ◽  
Mahoko Takahashi Ueda ◽  
...  

(1) Background: The ERVPb1 gene in humans is derived from an envelope (Env) gene of a human endogenous retrovirus group, HERV-P(b). The ERVPb1 gene reportedly has a conserved open reading frame (ORF) in Old World monkeys. Although its forced expression led to cell-fusion in an ex vivo cell culture system, like other Env-derived genes such as syncytin-1 and -2, its mRNA expression is not placenta-specific, but almost ubiquitous, albeit being quite low in human tissues and organs, implying a distinct role for ERVPb1. (2) Methods: To elucidate the cell lineage(s) in which the ERVPb1 protein is translated in human development, we developed a novel, highly sensitive system for detecting HERV-derived proteins/peptides expressed in the tissue differentiation process of human induced pluripotent stem cells (iPSCs). (3) Results: We first determined that ERVPb1 is also conserved in New World monkeys. Then, we showed that the ERVPb1 protein is translated from a uniquely spliced ERVPb1 transcript in hematopoietic cell lineages, including a subset of macrophages, and further showed that its mRNA expression is upregulated by lipopolysaccharide (LPS) stimulation in primary human monocytes. (4) Conclusions: ERVPb1 is unique to Simiiformes and actually translated in hematopoietic cell lineages, including a subset of macrophages.


Sign in / Sign up

Export Citation Format

Share Document