scholarly journals The kallikrein-kinin system is falling into pieces: bradykinin fragments are biological active peptides

2020 ◽  
Author(s):  
Igor Maciel Souza-Silva ◽  
Cristiane Amorim de Paula ◽  
Anderson Kenedy Santos ◽  
Vivian Louise Soares Oliveira ◽  
Isabella Domingos Rocha ◽  
...  

Background and purpose: Bradykinin [BK-(1-9)] is an endogenous peptide involved in many physiological and pathological processes, such as cardiovascular homeostasis and inflammation. The central dogma of the kallikrein-kinin system is that BK-(1-9) fragments are biologically inactive. In this manuscript, we proposed to test whether these fragments were indeed inactive. Experimental Approach: Nitric oxide (NO) was quantified in human, mouse and rat cells loaded with DAF-FM after stimulation with BK-(1-9), BK-(1-7), BK-(1-5) and BK-(1-3). We used adult male rat aortic ring preparation to test vascular reactivity mediated by BK-(1-9) fragments. Changes in blood pressure and heart rate was measured in conscious adult male rats by intraarterial catheter method. Key results: BK-(1-9) induced NO production in all cell types tested by B2 receptor activation. BK-(1-7), BK-(1-5) and BK-(1-3) also induced NO production in all tested cell types but this response was independent of the activation of B1 receptor and/or B2 receptor. BK-(1-7), BK-(1-5) or BK-(1-3) induced only vasorelaxant effect and in a concentration-dependent fashion. Vasorelaxant effects for BK-(1-7), BK-(1-5) or BK-(1-3) were independent of the kinin receptors. Different administration routes (i.e., intravenous or intra-arterial) did not affect the observed hypotension induced by BK-(1-7), BK-(1-5) or BK-(1-3). Importantly, these observations diverged from the BK-(1-9) results, highlighting that indeed the BK-(1-9) fragments do not seem to act via the classical kinin receptors. Conclusions and implications: In conclusion, BK-(1-7), BK-(1-5) and BK-(1-3) are biologically active components of the kallikrein-kinin system. Importantly, observed pathophysiological outcomes of these peptides are independent of B1R and/or B2R activation.

2000 ◽  
pp. 406-410 ◽  
Author(s):  
M Tena-Sempere ◽  
L Pinilla ◽  
LC Gonzalez ◽  
J Navarro ◽  
C Dieguez ◽  
...  

The obese gene (ob) product, leptin, has recently emerged as a key element in body weight homeostasis, neuroendocrine function and fertility. Identification of biologically active, readily synthesized fragments of the leptin molecule has drawn considerable attention, as they may provide a powerful tool for detailed characterization of the biological actions of leptin in different experimental settings. Recently, a fragment of mouse leptin protein comprising amino acids 116-130, termed leptin(116-130) amide, was shown to mimic the effects of the native molecule in terms of body weight gain and food intake, and to elicit LH and prolactin (PRL) secretion in vivo. As a continuation of our previous experimental work, the present study reports on the effects of leptin(116-130) amide on basal and stimulated testosterone secretion by adult rat testis in vitro. In addition, a comparison of the effects of human recombinant leptin and leptin(116-130) amide at the pituitary level on the patterns of LH, FSH, PRL and GH secretion is presented. As reported previously by our group, human recombinant leptin(10(-9)-10(-7)M) significantly inhibited both basal and human chorionic gonadotrophin (hCG)-stimulated testosterone secretion in vitro. Similarly, incubation of testicular tissue in the presence of increasing concentrations of leptin(116-130) amide (10(-9)-10(-5)M) resulted in a dose-dependent inhibition of basal and hCG-stimulated testosterone secretion; a reduction that was significant from a dose of 10(-7)M upwards. In addition, leptin(116-130) amide, at all doses tested (10(-9)-10(-5)M), significantly decreased LH and FSH secretion by incubated hemi-pituitaries from adult male rats. In contrast, in the same experimental protocol, recombinant leptin(10(-9)-10(-7)M) was ineffective in modulating LH and FSH release. Finally, neither recombinant leptin nor leptin(116-130) amide were able to change basal PRL and GH secretion in vitro. Our results confirm the ability of leptin, acting at the testicular level, to inhibit testosterone secretion, and map the effect to a domain of the leptin molecule that lies between amino acid residues 116 and 130. In addition, we provide evidence for a direct inhibitory action of leptin(116-130) amide on pituitary LH and FSH secretion, a phenomenon not observed for the native leptin molecule, in the adult male rat.


2021 ◽  
Vol 14 (3) ◽  
pp. 240
Author(s):  
Jean-Pierre Girolami ◽  
Nadine Bouby ◽  
Christine Richer-Giudicelli ◽  
Francois Alhenc-Gelas

This review addresses the physiological role of the kallikrein–kinin system in arteries, heart and kidney and the consequences of kallikrein and kinin actions in diseases affecting these organs, especially ischemic and diabetic diseases. Emphasis is put on pharmacological and genetic studies targeting kallikrein; ACE/kininase II; and the two kinin receptors, B1 (B1R) and B2 (B2R), distinguished through the work of Domenico Regoli and his collaborators. Potential therapeutic interest and limitations of the pharmacological manipulation of B1R or B2R activity in cardiovascular and renal diseases are discussed. This discussion addresses either the activation or inhibition of these receptors, based on recent clinical and experimental studies.


2020 ◽  
Vol 13 (10) ◽  
pp. 288
Author(s):  
Marielza Andrade Nunes ◽  
Mariana Toricelli ◽  
Natalia Mendes Schöwe ◽  
Helena Nascimento Malerba ◽  
Karis Ester Dong-Creste ◽  
...  

Background: Alzheimer’s disease is mainly characterized by remarkable neurodegeneration in brain areas related to memory formation. This progressive neurodegeneration causes cognitive impairment, changes in behavior, functional disability, and even death. Our group has demonstrated changes in the kallikrein–kinin system (KKS) in Alzheimer’s disease (AD) experimental models, but there is a lack of evidence about the role of the KKS in Alzheimer’s disease. Aim: In order to answer this question, we evaluated the potential of the kinin B2 receptors (BKB2R) to modify AD characteristics, particularly memory impairment, neurodegeneration, and Aβ peptide deposition. Methods: To assess the effects of B2, we used transgenic Alzheimer’s disease mice treated with B2 receptor (B2R) agonists and antagonists, and performed behavioral and biochemical tests. In addition, we performed organotypic hippocampal culture of wild-type (WT) and transgenic (TG) animals, where the density of cytokines, neurotrophin BDNF, activated astrocyte marker S100B, and cell death were analyzed after treatments. Results: Treatment with the B2R agonist preserved the spatial memory of transgenic mice and decreased amyloid plaque deposition. In organotypic hippocampal culture, treatment with B2R agonist decreased cell death, neuroinflammation, and S100B levels, and increased BDNF release. Conclusions: Our results indicate that the kallikrein–kinin system plays a beneficial role in Alzheimer’s disease through B2R activation. The use of B2R agonists could, therefore, be a possible therapeutic option for patients diagnosed with Alzheimer’s disease.


1976 ◽  
Vol 81 (1) ◽  
pp. 198-207 ◽  
Author(s):  
H. L. Verjans ◽  
K. B. Eik-Nes

ABSTRACT Effect of intramuscular administration of ACTH or dexamethasone on blood serum levels of testosterone, LH and FSH was examined in intact and castrated, adult, male rats. Six IU ACTH or 1 mg dexamethasone were given daily for 7 days. Corticotrophin treatment had no influence on circulating testosterone, LH and FSH in intact or castrated male rats. Dexamethasone administration resulted in a slight elevation of serum FSH in intact animals but not in castrates. LH and testosterone remained normal in both intact and castrated animals injected with dexamethasone. Under our conditions of study the secretions from the adrenal gland appear to be insignificant for the regulation of pituitary secretion of gonadotrophins in the male rat.


2002 ◽  
Vol 368 (3) ◽  
pp. 783-788 ◽  
Author(s):  
Noriaki SHIBATA ◽  
Junya MATSUMOTO ◽  
Ken NAKADA ◽  
Akira YUASA ◽  
Hiroshi YOKOTA

Various adverse effects of endocrine disruptors on the reproductive organs of male animals have been reported. We found that UDP-glucuronosyltransferase (UGT) activities towards bisphenol A, testosterone and oestradiol were significantly decreased in liver microsomes prepared from adult male Wistar rats administered with the endocrine disruptor bisphenol A (1mg/2 days for 2 or 4 weeks). However, suppression of the transferase activities was not observed in female rats, even after bisphenol A treatment for 4 weeks. Diethylstilbestrol, which is well known as an endocrine disruptor, had the same effects, but p-cumylphenol had no effect on UGT activities towards sex hormones. Co-administration of an anti-oestrogen, tamoxifen, inhibited the suppression of the transferase activities by bisphenol A. Western blotting analysis showed that the amount of UGT2B1, an isoform of UGT which glucuronidates bisphenol A, was decreased in the rat liver microsomes by the treatment. Northern blotting analysis also indicated that UGT2B1 mRNA in the liver was decreased by bisphenol A treatment. The suppression of UGT activities, UGT2B1 protein and UGT2B1 mRNA expression did not occur in female rats. The results indicate that bisphenol A treatment reduces the mRNA expression of UGT2B1 and other UGT isoforms that mediate the glucuronidation of sex hormones in adult male rats, and this suggests that the endocrine balance may be disrupted by suppression of glucuronidation.


1994 ◽  
Vol 40 (3) ◽  
pp. 45-47
Author(s):  
L. V. Tarasenko ◽  
S. V. Varga ◽  
V. N. Demchenko ◽  
Ye. V. Bolshova ◽  
N. D. Nosenko ◽  
...  

Radioactive 131Iwas injected in single doses 9.25, 37, and 92.5 kBq to prepubertal (30-day-old) male rats. Iodine incorporation in doses 37 and 92.5 kBq resulted in some functional changes in the reproductive system of mature rats: blood testosterone level increased, its hypothalamic aromatization intensified, and biologically active LH level in the blood dropped. Incorporation of 9.25 kBq of 131-I had no effect on male reproductive system. A possibility of direct injury to rat testicles by 131I incorporation is suggested.


2014 ◽  
Vol 142 (11-12) ◽  
pp. 756-763 ◽  
Author(s):  
Rajko Igic ◽  
Ranko Skrbic

Research on the renin-angiotensin system (RAS) has contributed significantly to advances in understanding cardiovascular and renal homeostasis and to the treatment of cardiovascular diseases. This review offers a brief history of the RAS with an overview of its major components and their functions, as well as blockers of the RAS, their clinical usage and current research that targets various components of the RAS. Because angiotensin-converting enzyme (ACE) metabolizes two biologically active peptides, one in the kallikrein-kinin system (KKS) and one in the RAS, it is the essential connection between the two systems. ACE releases very powerful hypertensive agent, angiotensin II and also inactivates strong hypotensive peptide, bradykinin. Inhibition of ACE thus has a dual effect, resulting in decreased angiotensin II and increased bradykinin. We described the KKS as well.


2017 ◽  
Vol 95 (10) ◽  
pp. 1117-1124 ◽  
Author(s):  
Domenico Regoli ◽  
Fernand Gobeil

The renin–angiotensin system (RAS) generates, maintains, and makes worse hypertension and cardiovascular diseases (CVDs) through its biologically active component angiotensin II (Ang II), that causes vasoconstriction, sodium retention, and structural alterations of the heart and the arteries. A few endogenous vasodilators, kinins, natriuretic peptides, and possibly angiotensin (1-7), exert opposite actions and may provide useful therapeutic agents. As endothelial autacoids, the kinins are potent vasodilators, active natriuretics, and protectors of the endothelium. Indeed, the kallikrein–kinin system (KKS) is considered the dominant mechanism for counteracting the detrimental effects of the hyperactive RAS. The 2 systems, RAS and KKS, are controlled by the angiotensin-converting enzyme (ACE) that generates Ang II and inactivates the kinins. Inhibitors of ACE can reduce the impact of Ang II and potentiate the kinins, thus contributing to restore the cardiovascular homeostasis. In the last 20 years, ACE-inhibitors (ACE-Is) have become the drugs of first choice for the treatments of the major CVDs. ACE-Is not only reduce blood pressure, as sartans also do, but by protecting and potentiating the kinins, they can reduce morbidity and mortality and improve the quality of life for patients with CVDs. This paper provides a brief review of the literature on this topic.


Sign in / Sign up

Export Citation Format

Share Document