scholarly journals Edition of complex gene families in tobacco with GoldenBraid 4.0, a multipurpose web-based platform for plant genome engineering

2020 ◽  
Author(s):  
Marta Vazquez-Vilar ◽  
Víctor Garcia-Carpintero ◽  
Sara Selma ◽  
Joan M Bernabé-Orts ◽  
Javier Sanchez-Vicente ◽  
...  

ABSTRACTCRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy in polyploid crops. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, multiplex constructs comprising tandemly arrayed gRNAs are difficult to assemble, this hampering more widespread use. Here we present a comprehensive upgrade of the popular cloning platform GoldenBraid (GB), in which, on top of its classical multigene cloning software, we integrate new assembly tools for two-dimensions gRNA multiplexing with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the gRNA unspaced approaches, respectively. As functional validation, we show, among others, the assembly of up to 17 tandemly-arrayed gRNAs constructs against a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in tobacco. With these constructs we generated a collection of Cas9-free SPL mutants harboring up to 9 biallelic mutations in a single generation. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR activators and repressors using single and multiplexing gRNAs is also validated. With the incorporation of the new CRISPR tools and part’s collection, GB4.0 turns an unprecedentedly comprehensive open platform for plant genetic engineering.

2021 ◽  
Vol 12 ◽  
Author(s):  
Marta Vazquez-Vilar ◽  
Víctor Garcia-Carpintero ◽  
Sara Selma ◽  
Joan M. Bernabé-Orts ◽  
Javier Sanchez-Vicente ◽  
...  

CRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, the design and assembly of multiplex constructs comprising tandemly arrayed guide RNAs (gRNAs) requires scarless cloning and is still troublesome due to the presence of repetitive sequences, thus hampering a more widespread use. Here we present a comprehensive extension of the software-assisted cloning platform GoldenBraid (GB), in which, on top of its multigene cloning software, we integrate new tools for the Type IIS-based easy and rapid assembly of up to six tandemly-arrayed gRNAs with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the crRNA unspaced approaches, respectively. As stress tests for the new tools, we assembled and used for Agrobacterium-mediated stable transformation a 17 Cas9-gRNAs construct targeting a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in Nicotiana tabacum. The 14 selected genes are targets of miR156, thus potentially playing an important role in juvenile-to-adult and vegetative-to-reproductive phase transitions. With the 17 gRNAs construct we generated a collection of Cas9-free SPL edited T1 plants harboring up to 9 biallelic mutations and showing leaf juvenility and more branching. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR/Cas activators and repressors using single and multiplexing gRNAs was validated using a Luciferase reporter with the Solanum lycopersicum Mtb promoter or the Agrobacterium tumefaciens nopaline synthase promoter in transient expression in Nicotiana benthamiana. With the incorporation of the new web-based tools and the accompanying collection of DNA parts, the GB4.0 genome edition turns an all-in-one open platform for plant genome engineering.


2018 ◽  
Author(s):  
Oleg Raitskin ◽  
Christian Schudoma ◽  
Anthony West ◽  
Nicola J. Patron

Molecular tools adapted from bacterial CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats) systems for adaptive immunity have become widely used for plant genome engineering, both to investigate gene functions and to engineer desirable traits. A number of different Cas (CRISPR-associated) nucleases are now used but, as most studies performed to date have engineered different targets using a variety of plant species and molecular tools, it has been difficult to draw conclusions about the comparative performance of different nucleases. Due to the time and effort required to regenerate engineered plants, efficiency is critical. In addition, there have been several reports of mutations at sequences with less than perfect identity to the target. While in some plant species it is possible to remove these so-called ‘off-targets’ by backcrossing to a parental line, the specificity of genome engineering tools is important when targeting specific members of closely-related gene families, especially when recent paralogues are co-located in the genome and unlikely to segregate. Specificity is also important for species that take years to reach sexual maturity or that are clonally propagated. Here, we directly compare the efficiency and specificity of Cas nucleases from different bacterial species together with engineered variants of Cas9. We find that the nucleotide content correlates with efficiency and that Cas9 from Staphylococcus aureus is comparatively most efficient at inducing mutations. We also demonstrate that ‘high-fidelity’ variants of Cas9 can reduce off-target mutations in plants. We present these molecular tools as standardised DNA parts to facilitate their re-use.


2014 ◽  
Vol 26 (1) ◽  
pp. 151-163 ◽  
Author(s):  
Nicholas J. Baltes ◽  
Javier Gil-Humanes ◽  
Tomas Cermak ◽  
Paul A. Atkins ◽  
Daniel F. Voytas

2021 ◽  
Vol 8 (7) ◽  
pp. 122
Author(s):  
Parul Singh ◽  
Syed Azmal Ali

Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Chih-Hsuan Wei ◽  
Hung-Yu Kao ◽  
Zhiyong Lu

The automatic recognition of gene names and their associated database identifiers from biomedical text has been widely studied in recent years, as these tasks play an important role in many downstream text-mining applications. Despite significant previous research, only a small number of tools are publicly available and these tools are typically restricted to detecting only mention level gene names or only document level gene identifiers. In this work, we report GNormPlus: an end-to-end and open source system that handles both gene mention and identifier detection. We created a new corpus of 694 PubMed articles to support our development of GNormPlus, containing manual annotations for not only gene names and their identifiers, but also closely related concepts useful for gene name disambiguation, such as gene families and protein domains. GNormPlus integrates several advanced text-mining techniques, including SimConcept for resolving composite gene names. As a result, GNormPlus compares favorably to other state-of-the-art methods when evaluated on two widely used public benchmarking datasets, achieving 86.7% F1-score on the BioCreative II Gene Normalization task dataset and 50.1% F1-score on the BioCreative III Gene Normalization task dataset. The GNormPlus source code and its annotated corpus are freely available, and the results of applying GNormPlus to the entire PubMed are freely accessible through our web-based tool PubTator.


2020 ◽  
Author(s):  
Youngbin Oh ◽  
Hyeonjin Kim ◽  
Bora Lee ◽  
Sang-Gyu Kim

Abstract BackgroundThe Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome.ResultsWe introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning annealed products of two oligonucleotides harboring target-binding sequence between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites.ConclusionsThis multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.


Author(s):  
Anindya Bandyopadhyay ◽  
Nagesh Kancharla ◽  
vivek javalkote ◽  
santanu dasgupta ◽  
Thomas Brutnell

Global population is predicted to approach 10 billion by 2050, an increase of over 2 billion from today. To meet the demands of growing, geographically and socio-economically diversified nations, we need to diversity and expand agricultural production. This expansion of agricultural productivity will need to occur under increasing biotic, and environmental constraints driven by climate change. Clustered regularly interspaced short palindromic repeats-site directed nucleases (CRISPR-SDN) and similar genome editing technologies will likely be key enablers to meet future agricultural needs. While the application of CRISPR-Cas9 mediated genome editing has led the way, the use of CRISPR-Cas12a is also increasing significantly for genome engineering of plants. The popularity of the CRISPR-Cas12a, the type V (class-II) system, is gaining momentum because of its versatility and simplified features. These include the use of a small guide RNA devoid of trans-activating crispr RNA (tracrRNA), targeting of T-rich regions of the genome where Cas9 is not suitable for use, RNA processing capability facilitating simpler multiplexing, and its ability to generate double strand breaks (DSB) with staggered ends. Many monocot and dicot species have been successfully edited using this Cas12a system and further research is ongoing to improve its efficiency in plants, including improving the temperature stability of the Cas12a enzyme, identifying new variants of Cas12a or synthetically producing Cas12a with flexible PAM sequences. In this review we provide a comparative survey of CRISPR-Cas12a and Cas9, and provide a perspective on applications of CRISPR-Cas12 in agriculture.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 56-56
Author(s):  
Michael Thomson

Abstract The precision and ease of use of CRISPR nucleases, such as Cas9 and Cpf1, for plant genome editing has the potential to accelerate a wide range of applications for crop improvement. For upstream research on gene discovery and validation, rapid gene knock-outs can enable testing of single genes and multi-gene families for functional effects. Large chromosomal deletions can test the function of tandem gene arrays and assist with positional cloning of QTLs by helping to narrow down the target region. Nuclease-deactivated Cas9 fusion proteins with transcriptional activators and repressors can be used to up and down-regulate gene expression. Even more promising, gene insertions and allele replacements can provide the opportunity to rapidly test the effects of different alleles at key loci in the same genetic background, providing a more precise alternative to marker-assisted backcrossing. Recently, Texas A&M AgriLife Research has supported the development of a Crop Genome Editing Lab at Texas A&M working towards optimizing a high-throughput gene editing pipeline and providing an efficient and cost-effective gene editing service for research and breeding groups. The lab is using rice as a model to test and optimize new approaches aimed towards overcoming current bottlenecks. For example, a wealth of genomics data from the rice community enables the development of novel approaches to predict which genes and target modifications may be most beneficial for crop improvement, taking advantage of known major genes, high-resolution GWAS data, multiple high-quality reference genomes, transcriptomics data, and resequencing data from the 3,000 Rice Genomes Project. Current projects have now expanded to work across multiple crops to provide breeding and research groups with a rapid gene editing pipeline to test candidate genes in their programs, with the ultimate goal of developing nutritious, high-yielding, stress-tolerant crops for the future.


2017 ◽  
Vol 1 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Yi Zhang ◽  
Caixia Gao

Genome-editing technologies based on the CRISPR (clustered regularly interspaced short palindromic repeat) system have been widely used in plants to investigate gene function and improve crop traits. The recently developed DNA-free delivery methods and precise base-editing systems provide new opportunities for plant genome engineering. In this review, we describe the novel DNA-free genome-editing methods in plants. These methods reduce off-target effects and may alleviate regulatory concern about genetically modified plants. We also review applications of base-editing systems, which are highly effective in generating point mutations and are of great value for introducing agronomically valuable traits. Future perspectives for DNA-free editing and base editing are also discussed.


Sign in / Sign up

Export Citation Format

Share Document