scholarly journals A functional genomic screen in Saccharomyces cerevisiae reveals divergent mechanisms of resistance to different alkylphosphocholine chemotherapeutic agents

2020 ◽  
Author(s):  
Jacquelin M. Garcia ◽  
Michael J. Schwabe ◽  
Dennis R. Voelker ◽  
Wayne R. Riekhof

AbstractThe alkylphosphocholine (APC) class of antineoplastic and antiprotozoal drugs, such as edelfosine and miltefosine, are structural mimics of lyso-phosphatidylcholine (lyso-PC), and are inhibitory to the yeast Saccharomyces cerevisiae at low micromolar concentrations. Cytotoxic effects related to inhibition of phospholipid synthesis, induction of an unfolded protein response, inhibition of oxidative phosphorylation, and disruption of lipid rafts have been attributed to members of this drug class, however the molecular mechanisms of action of these drugs remain incompletely understood. Cytostatic and cytotoxic effects of the alkylphosphocholines exhibit variability with regard to chemical structure, leading to differences in effectiveness against different organisms or cell types. We now report the comprehensive identification of Saccharomyces cerevisiae titratable-essential gene and haploid non-essential gene deletion mutants that are resistant to the APC drug miltefosine (hexadecyl-O-phosphocholine). 58 strains out of ~5600 tested displayed robust and reproducible resistance to miltefosine. This gene set was heavily enriched in functions associated with vesicular transport steps, especially those involving endocytosis and retrograde transport of endosome derived vesicles to the Golgi or vacuole, suggesting a role for these trafficking pathways in transport of miltefosine to potential sites of action in the endoplasmic reticulum (ER) and mitochondrion. In addition, we identified mutants with defects in phosphatidylinositol-4-phosphate synthesis (TetO::STT4) and hydrolysis (sac1Δ), an oxysterol binding protein homolog (osh2Δ), a number of ER resident proteins, and multiple components of the eisosome. These findings suggest that ER-plasma membrane contact sites and retrograde vesicle transport are involved in the interorganelle transport of lyso-PtdCho and related lyso-phospholipid-like analogs to their intracellular sites of cytotoxic activity.

Author(s):  
Jaquelin M Garcia ◽  
Michael J Schwabe ◽  
Dennis R Voelker ◽  
Wayne R Riekhof

Abstract The alkylphosphocholine (APC) class of antineoplastic and antiprotozoal drugs, such as edelfosine and miltefosine, are structural mimics of lyso-phosphatidylcholine (lyso-PC), and are inhibitory to the yeast Saccharomyces cerevisiae at low micromolar concentrations. Cytotoxic effects related to inhibition of phospholipid synthesis, induction of an unfolded protein response, inhibition of oxidative phosphorylation, and disruption of lipid rafts have been attributed to members of this drug class, however the molecular mechanisms of action of these drugs remain incompletely understood. Cytostatic and cytotoxic effects of the alkylphosphocholines exhibit variability with regard to chemical structure, leading to differences in effectiveness against different organisms or cell types. We now report the comprehensive identification of Saccharomyces cerevisiae titratable-essential gene and haploid non-essential gene deletion mutants that are resistant to the APC drug miltefosine (hexadecyl-O-phosphocholine). 58 strains out of ∼5600 tested displayed robust and reproducible resistance to miltefosine. This gene set was heavily enriched in functions associated with vesicular transport steps, especially those involving endocytosis and retrograde transport of endosome derived vesicles to the Golgi or vacuole, suggesting a role for these trafficking pathways in transport of miltefosine to potential sites of action in the endoplasmic reticulum (ER) and mitochondrion. In addition, we identified mutants with defects in phosphatidylinositol-4-phosphate synthesis (TetO::STT4) and hydrolysis (sac1Δ), an oxysterol binding protein homolog (osh2Δ), a number of ER resident proteins, and multiple components of the eisosome. These findings suggest that ER-plasma membrane contact sites and retrograde vesicle transport are involved in the interorganelle transport of lyso-PtdCho and related lyso-phospholipid-like analogs to their intracellular sites of cytotoxic activity.


2020 ◽  
Author(s):  
Chenling Xiong ◽  
Katherina C. Chua ◽  
Tore B. Stage ◽  
Jeffrey Kim ◽  
Anne Altman-Merino ◽  
...  

AbstractChemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting adverse event associated with treatment with paclitaxel and other chemotherapeutic agents. The prevention and treatment of CIPN are limited by a lack of understanding of the molecular mechanisms underlying this toxicity. In the current study, a human induced pluripotent stem cell–derived sensory neuron (iPSC-SN) model was developed for the study of chemotherapy-induced neurotoxicity. The iPSC-SNs express proteins characteristic of nociceptor, mechanoreceptor and proprioceptor sensory neurons and show Ca2+ influx in response to capsaicin, α,β-meATP and glutamate. iPSC-SNs are relatively resistant to the cytotoxic effects of paclitaxel, with IC50 values of 38.1 μM (95% CI: 22.9 – 70.9 μM) for 48 hr exposure and 9.3 μM (95% CI: 5.7 – 16.5 μM) for 72 hr treatment. Paclitaxel causes dose- and time-dependent changes in neurite network complexity detected by βIII-tubulin staining and high content imaging. The IC50 for paclitaxel reduction of neurite area was 1.4 μM (95% CI: 0.3 - 16.9 μM) for 48 hr exposure and 0.6 μM (95% CI: 0.09 - 9.9 μM) for 72 hr exposure. Decreased mitochondrial membrane potential, slower movement of mitochondria down the neurites and changes in glutamate-induced neuronal excitability were also observed with paclitaxel exposure. The iPSC-SNs were also sensitive to docetaxel, vincristine and bortezomib. Collectively, these data support the use of iPSC-SNs for detailed mechanistic investigations of genes and pathways implicated in chemotherapy-induced neurotoxicity and the identification of novel therapeutic approaches for its prevention and treatment.


Haematologica ◽  
2020 ◽  
Author(s):  
Thomas Milan ◽  
Magalie Celton ◽  
Karine Lagacé ◽  
Élodie Roques ◽  
Safia Safa-Tahar-Henni ◽  
...  

Chromosomal translocations involving KMT2A gene are one of the most common genetic alterations found in pediatric acute myeloid leukemias (AML) although the molecular mechanisms that initiate the disease remain incompletely defined. To elucidate these initiating events we have used a human model system of AML driven by the KMT2A-MLLT3 (KM3) fusion. More specifically, we investigated changes in DNA methylation, histone modifications, and chromatin accessibility at each stage of our model system and correlated these with expression changes. We observe the development of a profound hypomethylation phenotype in the early stages of leukemic transformation after KM3 addition along with loss of expression of stem cell associated genes along with skewed expression in other genes such as S100A8/9 implicated in leukemogenesis. In addition, early increases in the expression of the lysine demethylase KDM4B was functionally linked to these expression changes as well as other key transcription factors. Remarkably, our ATAC-seq data showed that there were relatively few leukemiaspecific changes and the vast majority corresponded to open chromatin regions and transcription factor clusters previously observed in other cell types. Integration of the gene expression and epigenetic changes revealed the adenylate cyclase gene ADCY9 as an essential gene in KM3-AML, and suggest the potential for autocrine signalling through the chemokine receptor CCR1 and CCL23 ligand. Together, our results suggest that KM3 induces subtle changes in the epigenome while co-opting the normal transcriptional machinery to drive leukemogenesis.


2019 ◽  
Author(s):  
C. Kimberly Tsui ◽  
Robyn M. Barfield ◽  
Curt R. Fischer ◽  
David W. Morgens ◽  
Amy Li ◽  
...  

AbstractAntibody-drug conjugates (ADCs) selectively deliver highly toxic chemotherapeutic agents to target antigen-expressing cells and have become an important cancer treatment in recent years. However, the molecular mechanisms by which ADCs are internalized and activated within cells remain unclear. Here we use CRISPR-Cas9 screens to identify genes that control the toxicity of ADCs. Our results demonstrate critical roles for a range of known and novel endolysosomal trafficking regulators in ADC toxicity. We identify and characterize C18orf8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of CRISPR screens with ADCs bearing a noncleavable linker versus a cleavable valine-citrulline (VC) linker, we show that a subset of late endosomal and lysosomal regulators are selectively essential for toxicity of noncleavable linker ADCs. We further show that cleavable VC linkers are rapidly processed upon internalization and therefore surprisingly appear to bypass the requirement of lysosomal delivery. Lastly, we show that inhibition of sialic acid biosynthesis sensitizes cells to ADC treatment by increasing the rate of ADC internalization. This sensitization was observed using several ADCs targeting different antigens in diverse cancer cell types, including the FDA-approved ADC trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal novel regulators of endolysosomal trafficking, provide important insights to guide future ADC design, and identify candidate combination therapy targets as well as potential mechanisms of ADC resistance.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ofir Klein ◽  
Ronit Sagi-Eisenberg

Anaphylaxis is a notorious type 2 immune response which may result in a systemic response and lead to death. A precondition for the unfolding of the anaphylactic shock is the secretion of inflammatory mediators from mast cells in response to an allergen, mostly through activation of the cells via the IgE-dependent pathway. While mast cells are specialized secretory cells that can secrete through a variety of exocytic modes, the most predominant mode exerted by the mast cell during anaphylaxis is compound exocytosis—a specialized form of regulated exocytosis where secretory granules fuse to one another. Here, we review the modes of regulated exocytosis in the mast cell and focus on compound exocytosis. We review historical landmarks in the research of compound exocytosis in mast cells and the methods available for investigating compound exocytosis. We also review the molecular mechanisms reported to underlie compound exocytosis in mast cells and expand further with reviewing key findings from other cell types. Finally, we discuss the possible reasons for the mast cell to utilize compound exocytosis during anaphylaxis, the conflicting evidence in different mast cell models, and the open questions in the field which remain to be answered.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd9036
Author(s):  
Sara Saez-Atienzar ◽  
Sara Bandres-Ciga ◽  
Rebekah G. Langston ◽  
Jonggeol J. Kim ◽  
Shing Wan Choi ◽  
...  

Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kolja Becker ◽  
Holger Klein ◽  
Eric Simon ◽  
Coralie Viollet ◽  
Christian Haslinger ◽  
...  

AbstractDiabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP–PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and β-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1074
Author(s):  
Giuseppina Divisato ◽  
Silvia Piscitelli ◽  
Mariantonietta Elia ◽  
Emanuela Cascone ◽  
Silvia Parisi

Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial–mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial–mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.


Author(s):  
Hee-Dae Kim ◽  
Jing Wei ◽  
Tanessa Call ◽  
Nicole Teru Quintus ◽  
Alexander J. Summers ◽  
...  

AbstractDepression is the leading cause of disability and produces enormous health and economic burdens. Current treatment approaches for depression are largely ineffective and leave more than 50% of patients symptomatic, mainly because of non-selective and broad action of antidepressants. Thus, there is an urgent need to design and develop novel therapeutics to treat depression. Given the heterogeneity and complexity of the brain, identification of molecular mechanisms within specific cell-types responsible for producing depression-like behaviors will advance development of therapies. In the reward circuitry, the nucleus accumbens (NAc) is a key brain region of depression pathophysiology, possibly based on differential activity of D1- or D2- medium spiny neurons (MSNs). Here we report a circuit- and cell-type specific molecular target for depression, Shisa6, recently defined as an AMPAR component, which is increased only in D1-MSNs in the NAc of susceptible mice. Using the Ribotag approach, we dissected the transcriptional profile of D1- and D2-MSNs by RNA sequencing following a mouse model of depression, chronic social defeat stress (CSDS). Bioinformatic analyses identified cell-type specific genes that may contribute to the pathogenesis of depression, including Shisa6. We found selective optogenetic activation of the ventral tegmental area (VTA) to NAc circuit increases Shisa6 expression in D1-MSNs. Shisa6 is specifically located in excitatory synapses of D1-MSNs and increases excitability of neurons, which promotes anxiety- and depression-like behaviors in mice. Cell-type and circuit-specific action of Shisa6, which directly modulates excitatory synapses that convey aversive information, identifies the protein as a potential rapid-antidepressant target for aberrant circuit function in depression.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Sophie Wiszniak ◽  
Quenten Schwarz

Vascular endothelial growth factor A (VEGF-A or VEGF) is a highly conserved secreted signalling protein best known for its roles in vascular development and angiogenesis. Many non-endothelial roles for VEGF are now established, with the discovery that VEGF and its receptors VEGFR1 and VEGFR2 are expressed in many non-vascular cell-types, as well as various cancers. In addition to secreted VEGF binding to its receptors in the extracellular space at the cell membrane (i.e., in a paracrine or autocrine mode), intracellularly localised VEGF is emerging as an important signalling molecule regulating cell growth, survival, and metabolism. This intracellular mode of signalling has been termed “intracrine”, and refers to the direct action of a signalling molecule within the cell without being secreted. In this review, we describe examples of intracrine VEGF signalling in regulating cell growth, differentiation and survival, both in normal cell homeostasis and development, as well as in cancer. We further discuss emerging evidence for the molecular mechanisms underpinning VEGF intracrine function, as well as the implications this intracellular mode of VEGF signalling may have for use and design of anti-VEGF cancer therapeutics.


Sign in / Sign up

Export Citation Format

Share Document