scholarly journals Drosophila RASopathy Models Identify Disease Subtype Differences and Biomarkers of Drug Efficacy

2020 ◽  
Author(s):  
Tirtha K. Das ◽  
Jared Gatto ◽  
Rupa Mirmira ◽  
Ethan Hourizadeh ◽  
Dalia Kaufman ◽  
...  

AbstractRASopathies represent a family of mostly autosomal dominant diseases that are caused by missense variants in the RAS/MAPK pathway. In aggregate, they are among the more common Mendelian disorders. They share overlapping pathologies that include structural birth and developmental defects that affect the heart, craniofacial and skeletal, lymphatic, and nervous systems. Variants in different genes—including those encoding KRAS, NRAS, BRAF, RAF1, and SHP2—are associated with overlapping but distinct phenotypes. Here, we report an analysis of 13 Drosophila transgenic lines, each expressing a different human disease isoform associated with a form of RASopathy. Similar to their human counterparts, each Drosophila line has common aspects but also important phenotypic distinctions including signaling pathways as well as response to therapeutics. For some lines, these differences represent activation of pathways outside the core RAS signaling pathway including the Hippo and SAPK/JNK signaling networks. We identified two classes of clinically relevant drugs, statins and histone deacetylase inhibitors, that improved viability across most RASopathy lines; in contrast, several canonical RAS pathway inhibitors proved poorly effective against, e.g., SHP2-expressing lines encoded by PTPN11. Our study provides a whole animal platform for comparison of a large number of RASopathy-associated variants. Among these variants we have identified differences in tissue phenotypes, in activation signaling pathways in biomarkers of disease progression and drug efficacy, and suggest drug classes that can be tolerated over long treatment periods for consideration in broad RASopathy trials.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 85-85 ◽  
Author(s):  
Jinghui Zhang ◽  
Charles G. Mullighan ◽  
Richard C. Harvey ◽  
Kenneth E Buetow ◽  
William L. Carroll ◽  
...  

Abstract Abstract 85 Despite the overall favorable treatment outcome for childhood ALL, about 20% of patients still experience relapse. Moreover, many ALL cases lack sentinel chromosomal alterations, and the genetic factors contributing to leukemogenesis in these cases are poorly understood. Genome-wide profiling of DNA copy number alterations (CNA) coupled with focused candidate gene resequencing has identified novel genetic alterations that contribute to leukemogenesis and are associated with treatment outcome in ALL. However, large-scale analysis of somatic sequence mutations in ALL has not yet been performed. As part of the COG HR-ALL TARGET (Therapeutically Applicable Research to Generate Effective Targets) Project, 125 genes (selected based on recurrent CNAs, gene expression profiles and known cancer genes) were sequenced in 187 HR B-precursor ALL patients enrolled in COG P9906. The entire coding region and UTRs of each gene were sequenced and more than 98% of the targeted nucleotides have high quality sequence coverage. We found that somatic mutations are frequent in genes that encode for proteins involved in signal transduction, B-cell development and p53/RB signaling. A notable finding was the presence of somatic mutations resulting in constitutive activation of RAS signaling in at least 39% of the cohort. Seventy-three cases have at least one mutation in NRAS (30), KRAS (28), PTPN11 (9), FLT3 (7) and NF1 (6), including 7 patients with multiple mutations (KRAS and NRAS (3), FLT3 and NF1 (1), PTPN11 and FLT3 (1), PTPN11 and FLT3 (1), PTPN11 and NRAS (1), PTPN11 and KRAS (1)). There was no association between RAS pathway mutations and event-free survival or cumulative incidence of relapse in this HR patient cohort. Notably, RAS pathway mutations were uncommon in ALL cases with TCF3-PBX1 (1/22 cases) or MLL translocations (2/18 cases), but occurred frequently in cases lacking known sentinel cytogenetic lesions (68/145 cases, 47%, p<0.0001). Sequence mutations that are known or predicted to impair normal B-cell development were observed in at least 14% of the cohort (PAX5 (21), IKZF1 (7)), with confirmatory germline sequencing underway to clarify whether lymphoblast sequence alterations present in other B-cell development genes including BLK, ETV6, IKZF3, TCF3, RAG1, and BCL11A are somatic or germline. Sequence mutations disrupting TP53/RB1 signaling ((TP53 (10), RB1 (4), CDKN2A (4)) occurred in 10% of cases. Activating sequence mutations in JAK family members (JAK2 (16) and JAK1 (3)) were present in 10% of the cases. Of the 103 cases (55%) with at least one sequence mutation in these four (RAS signaling, B-cell development, p53/RB, and JAK) pathways, 30 have somatic mutations in multiple pathways. When both CNAs and sequence mutations are considered, 94% of the cases have lesions in at least one of the pathways and 31% of the cases have somatic alterations in all three of the B-cell development, RAS, and p53/RB1 signaling pathways, suggesting that aberrations in multiple pathways may be central to development of HR-ALL. Our results contrast sharply with known genetic alterations in T-cell ALL, where RAS pathway alterations are relatively uncommon (<10% of cases). PTEN somatic mutations and deletions occur in approximately 25% of cases of T-cell ALL, but we found no PTEN alterations in this cohort, suggesting differential activation of RAS and PI-3K signaling pathways in T-cell and HR B-precursor ALL. Validation of putative deleterious mutations in other sequenced genes (e.g., TBL1XR1, BLK, and CREBBP) is ongoing. These results from the TARGET COG HR-ALL Pilot Project confirm and extend prior knowledge of genetics of this subtype of ALL and point the way to new potential therapeutic strategies for this patient population. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5059
Author(s):  
Martha Dillon ◽  
Antonio Lopez ◽  
Edward Lin ◽  
Dominic Sales ◽  
Ron Perets ◽  
...  

The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1219-1230 ◽  
Author(s):  
Audrey M Huang ◽  
Gerald M Rubin

Abstract Differentiation of the R7 photoreceptor cell is dependent on the Sevenless receptor tyrosine kinase, which activates the RAS1/mitogen-activated protein kinase signaling cascade. Kinase suppressor of Ras (KSR) functions genetically downstream of RAS1 in this signal transduction cascade. Expression of dominant-negative KSR (KDN) in the developing eye blocks RAS pathway signaling, prevents R7 cell differentiation, and causes a rough eye phenotype. To identify genes that modulate RAS signaling, we screened for genes that alter RAS1/KSR signaling efficiency when misexpressed. In this screen, we recovered three known genes, Lk6, misshapen, and Akap200. We also identified seven previously undescribed genes; one encodes a novel rel domain member of the NFAT family, and six encode novel proteins. These genes may represent new components of the RAS pathway or components of other signaling pathways that can modulate signaling by RAS. We discuss the utility of gain-of-function screens in identifying new components of signaling pathways in Drosophila.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3427
Author(s):  
Reyhaneh Farghadani ◽  
Rakesh Naidu

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among women worldwide. Despite the overall successes in breast cancer therapy, hormone-independent HER2 negative breast cancer, also known as triple negative breast cancer (TNBC), lacking estrogens and progesterone receptors and with an excessive expression of human epidermal growth factor receptor 2 (HER2), along with the hormone-independent HER2 positive subtype, still remain major challenges in breast cancer treatment. Due to their poor prognoses, aggressive phenotype, and highly metastasis features, new alternative therapies have become an urgent clinical need. One of the most noteworthy phytochemicals, curcumin, has attracted enormous attention as a promising drug candidate in breast cancer prevention and treatment due to its multi-targeting effect. Curcumin interrupts major stages of tumorigenesis including cell proliferation, survival, angiogenesis, and metastasis in hormone-independent breast cancer through the modulation of multiple signaling pathways. The current review has highlighted the anticancer activity of curcumin in hormone-independent breast cancer via focusing on its impact on key signaling pathways including the PI3K/Akt/mTOR pathway, JAK/STAT pathway, MAPK pathway, NF-ĸB pathway, p53 pathway, and Wnt/β-catenin, as well as apoptotic and cell cycle pathways. Besides, its therapeutic implications in clinical trials are here presented.


iScience ◽  
2021 ◽  
pp. 102306
Author(s):  
Tirtha K. Das ◽  
Jared Gatto ◽  
Rupa Mirmira ◽  
Ethan Hourizadeh ◽  
Dalia Kaufman ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Yu-Chen S. H. Yang ◽  
Po-Jui Ko ◽  
Yi-Shin Pan ◽  
Hung-Yun Lin ◽  
Jacqueline Whang-Peng ◽  
...  

AbstractThyroid hormone analogues—particularly, l-thyroxine (T4) has been shown to be relevant to the functions of a variety of cancers. Integrin αvβ3 is a plasma membrane structural protein linked to signal transduction pathways that are critical to cancer cell proliferation and metastasis. Thyroid hormones, T4 and to a less extend T3 bind cell surface integrin αvβ3, to stimulate the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway to stimulate cancer cell growth. Thyroid hormone analogues also engage in crosstalk with the epidermal growth factor receptor (EGFR)-Ras pathway. EGFR signal generation and, downstream, transduction of Ras/Raf pathway signals contribute importantly to tumor cell progression. Mutated Ras oncogenes contribute to chemoresistance in colorectal carcinoma (CRC); chemoresistance may depend in part on the activity of ERK1/2 pathway. In this review, we evaluate the contribution of thyroxine interacting with integrin αvβ3 and crosstalking with EGFR/Ras signaling pathway non-genomically in CRC proliferation. Tetraiodothyroacetic acid (tetrac), the deaminated analogue of T4, and its nano-derivative, NDAT, have anticancer functions, with effectiveness against CRC and other tumors. In Ras-mutant CRC cells, tetrac derivatives may overcome chemoresistance to other drugs via actions initiated at integrin αvβ3 and involving, downstream, the EGFR-Ras signaling pathways.


Tumor Biology ◽  
2017 ◽  
Vol 39 (10) ◽  
pp. 101042831773494 ◽  
Author(s):  
Daichiro Fujiwara ◽  
Masanobu Tsubaki ◽  
Tomoya Takeda ◽  
Yoshika Tomonari ◽  
Yu-ichi Koumoto ◽  
...  

1997 ◽  
Vol 17 (7) ◽  
pp. 3547-3555 ◽  
Author(s):  
M B Ramocki ◽  
S E Johnson ◽  
M A White ◽  
C L Ashendel ◽  
S F Konieczny ◽  
...  

The ability of basic helix-loop-helix muscle regulatory factors (MRFs), such as MyoD, to convert nonmuscle cells to a myogenic lineage is regulated by numerous growth factor and oncoprotein signaling pathways. Previous studies have shown that H-Ras 12V inhibits differentiation to a skeletal muscle lineage by disrupting MRF function via a mechanism that is independent of the dimerization, DNA binding, and inherent transcriptional activation properties of the proteins. To investigate the intracellular signaling pathway(s) that mediates the inhibition of MRF-induced myogenesis by oncogenic Ras, we tested two transformation-defective H-Ras 12V effector domain variants for their ability to alter terminal differentiation. H-Ras 12V,35S retains the ability to activate the Raf/MEK/mitogen-activated protein (MAP) kinase cascade, whereas H-Ras 12V,40C is unable to interact directly with Raf-1 yet still influences other signaling intermediates, including Rac and Rho. Expression of each H-Ras 12V variant in C3H10T1/2 cells abrogates MyoD-induced activation of the complete myogenic program, suggesting that MAP kinase-dependent and -independent Ras signaling pathways individually block myogenesis in this model system. However, additional studies with constitutively activated Rac1 and RhoA proteins revealed no negative effects on MyoD-induced myogenesis. Similarly, treatment of Ras-inhibited myoblasts with the MEK1 inhibitor PD98059 revealed that elevated MAP kinase activity is not a significant contributor to the H-Ras 12V effect. These data suggest that an additional Ras pathway, distinct from the well-characterized MAP kinase and Rac/Rho pathways known to be important for the transforming function of activated Ras, is primarily responsible for the inhibition of myogenesis by H-Ras 12V.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 819
Author(s):  
Olga Soriano ◽  
Marta Alcón-Pérez ◽  
Miguel Vicente-Manzanares ◽  
Esther Castellano

Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.


2017 ◽  
Author(s):  
◽  
Obiaara Ukah

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The Human Immunodeficiency Virus Type-1 (HIV-1) is the etiological agent of Acquired Immunodeficiency Syndrome, a disease that causes the host to succumb to secondary infections. There is currently no cure for HIV-1 infection, but Highly Active Anti-Retroviral Therapy (HAART) can bring the viral load in patients down to undetectable levels in the blood (less than 50 copies/mL). Furthermore, when the minimal limit of detection has been reached and the patient stops HAART, the viral load in the blood increases at an exponential rate due to the reactivation of latent HIV-1 infected cells that evaded HAART. Ongoing efforts focus on the eradication of HIV-1 by the development of potent latency reversing agents (LRAs) that can successfully reactivate latently infected cells, and of antivirals that can effectively inhibit re-establishment of infection post reactivation. This dissertation focuses on the evaluations of 2 classes of HIV-1 drugs, Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), and LRAs, to better understand the mechanisms by which each drug class inhibits and reactivates HIV-1 replication respectively, to aid in the effort towards the development of antivirals that will lead to HIV-1 eradication. Chapter II describes the inhibitory mechanisms of NNRTIs using biochemical methods, which may further explain the differences in potency among drugs of this class. In addition, we explain how changes in the position of HIV-1 RT in the DNA substrate sequence, and the nucleotide terminating the primer 3'-end have a significant effect on the polymerase properties of the enzyme. We demonstrate that there are NNRTI- and site-dependent differences in the potency of NNRTIs, which is demonstrated by the repositioning, or lack there of, of the primer 3'-end of DNA/DNA substrates from the polymerase active site. This is further supported by the efficiency of dNTP or NRTI incorporation in the presence of NNRTI with multiple DNA/DNA substrates, which are representative of different sites in the template sequence. We also show that there are site-dependent differences in the polymerase properties of RT, which is demonstrated by rate of dNTP incorporation and incorporation efficiency at different sites in the template sequence. Chapter III describes the various effects of different types of LRAs, such as histone deacetylase inhibitors and histone methyltransferase inhibitors, on the dynamics of HIV-1 latency reversal in latent cell lines. Here, we demonstrate the use of branched DNA in situ hybridization in combination with immunocytochemistry to study the kinetics and dynamics of latency reversal in various latent cell lines. This technique is augmented with the use of automated screening using microscopy and flow cytometry to quickly detect different populations of latent and reactivated proviruses in thousands of cells in a short amount of time. Understanding the mechanisms by which a drug affects a biological process is important for establishing drug efficacy. Such information can influence what modifications are added to, or removed from drugs, which can cause a change in drug potency. This dissertation outlines assays used to evaluate the mechanisms of various drugs, and the influence of these drugs on the dynamics of HIV-1 replication. It is our hope that the work presented here will help progress efforts to eradicate HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document