scholarly journals A low-dimensional connectome manifold governs the organization and plasticity of social brain functions in humans

2020 ◽  
Author(s):  
Sofie L Valk ◽  
Philipp Kanske ◽  
Bo-yong Park ◽  
Seok-Jun Hong ◽  
Anne Böckler-Raettig ◽  
...  

SUMMARYSocial skills such as our abilities to understand feelings and thoughts are at the core of what makes us human. Here, we combined a unique longitudinal intervention study with cutting-edge connectomics to study the organization and plasticity of brain networks associated with different social skills (socio-affective, socio-cognitive, and attention-mindfulness). Baseline analysis in our cohort (n=332) showed that social brain networks have (i) compact and dissociable signatures in a low-dimensional manifold governed by gradients of brain connectivity, (ii) specific neurobiological underpinnings, and (iii) reflect inter-individual variations in social behavior. Furthermore, longitudinal brain network analyses following a 9-month training intervention indicated (iv) domain-specific reorganization of these signatures that was furthermore predictive of behavioral change in social functions. Multiple sensitivity analyses supported robustness. Our findings, thus, provide novel evidence on macroscale network organization and plasticity underlying human social cognition and behavior, and suggest connectome-reconfigurations as a mechanism of adult skill learning.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Holger Franz Sperdin ◽  
Ana Coito ◽  
Nada Kojovic ◽  
Tonia Anahi Rihs ◽  
Reem Kais Jan ◽  
...  

Social impairments are a hallmark of Autism Spectrum Disorders (ASD), but empirical evidence for early brain network alterations in response to social stimuli is scant in ASD. We recorded the gaze patterns and brain activity of toddlers with ASD and their typically developing peers while they explored dynamic social scenes. Directed functional connectivity analyses based on electrical source imaging revealed frequency specific network atypicalities in the theta and alpha frequency bands, manifesting as alterations in both the driving and the connections from key nodes of the social brain associated with autism. Analyses of brain-behavioural relationships within the ASD group suggested that compensatory mechanisms from dorsomedial frontal, inferior temporal and insular cortical regions were associated with less atypical gaze patterns and lower clinical impairment. Our results provide strong evidence that directed functional connectivity alterations of social brain networks is a core component of atypical brain development at early stages of ASD.


2004 ◽  
Vol 27 (6) ◽  
pp. 856-856 ◽  
Author(s):  
Conrado Bosman ◽  
Enzo Brunetti ◽  
Francisco Aboitiz

Dysfunctions of the neural circuits that implement social behavior are necessary but not a sufficient condition to develop schizophrenia. We propose that schizophrenia represents a disease of general connectivity that impairs not only the “social brain” networks, but also different neural circuits related with higher cognitive and perceptual functions. We discuss possible mechanisms and evolutionary considerations.


2022 ◽  
Author(s):  
Qingyuan Wu ◽  
Qi Huang ◽  
Chao Liu ◽  
Haiyan Wu

Oxytocin (OT) is a neuropeptide that modulates social behaviors and the social brain. The effects of OT on the social brain can be tracked by assessing the neural activity in the resting and task states, providing a system-level framework for characterizing state-based functional relationships of its distinct effect. Here, we contribute to this framework by examining how OT modulates social brain network correlations during the resting and task states using fMRI. Firstly, we investigated network activation, followed by analyzing the relationship between networks and individual differences measured by the Positive and Negative Affect Schedule and the Big-Five scales. Subsequently, we evaluated functional connectivity in both states. Finally, the relationship between networks across the states was represented by the predictive power of networks in the resting state for task-evoked activity. The difference in predicted accuracy between subjects displayed individual variations in this relationship. Our results showed decreased dorsal default mode network (DDMN) for OT group in the resting state. Additionally, only in the OT group, the activity of the DDMN in the resting state had the largest predictive power for task-evoked activation of the precuneus network (PN). The results also demonstrated OT reduced individual variation of PN, specifically, the difference of accuracy between predicting a subject's own and others' PN task activation. These findings suggest a distributed but modulatory effect of OT on the association between resting brain networks and task-dependent brain networks, showing increased DDMN to PN connectivity after OT administration, which may support OT-induced distributed processing during task performance.


2020 ◽  
Author(s):  
Jun Kitazono ◽  
Ryota Kanai ◽  
Masafumi Oizumi

AbstractTo understand the nature of the complex behavior of the brain, one important step is to identify “cores” in the brain network, where neurons or brain areas strongly interact with each other. Cores can be considered as essential sub-networks for brain functions. In the last few decades, an information-theoretic approach to identifying cores has been developed. In this approach, many-to-many nonlinear interactions between parts are measured by an information loss function, which quantifies how much information would be lost if interactions between parts were removed. Then, a core called a “complex” is defined as a subsystem wherein the amount of information loss is locally maximal. Although identifying complexes can be a novel and useful approach to revealing essential properties of the brain network, its practical application is hindered by the fact that computation time grows exponentially with system size. Here we propose a fast and exact algorithm for finding complexes, called Hierarchical Partitioning for Complex search (HPC). HPC finds complexes by hierarchically partitioning systems to narrow down candidates for complexes. The computation time of HPC is polynomial, which is dramatically smaller than exponential. We prove that HPC is exact when an information loss function satisfies a mathematical property, monotonicity. We show that mutual information is one such information loss function. We also show that a broad class of submodular functions can be considered as such information loss functions, indicating the expandability of our framework to the class. In simulations, we show that HPC can find complexes in large systems (up to several hundred) in a practical amount of time when mutual information is used as an information loss function. Finally, we demonstrate the use of HPC in electrocorticogram recordings from monkeys. HPC revealed temporally stable and characteristic complexes, indicating that it can be reliably utilized to characterize brain networks.Author summaryAn important step in understanding the nature of the brain is to identify “cores” in the brain network, which can be considered as essential areas for brain functions and cognition. In the last few decades, a novel definition of cores has been developed, which takes account of many-to-many interactions among elements of the network. Although considering many-to-many interactions can be important in understanding the complex brain network, identifying cores in large systems has been impossible because of the extremely large computational costs required. Here, we propose a fast and exact algorithm for finding cores. We show that the proposed algorithm enables us to find cores in large systems consisting of several hundred elements in a practical amount of time. We applied our algorithm to electrocorticogram recordings from a monkey that monitored electrical activity of the brain with electrodes placed directly on the brain surface, and demonstrated that there are stable and characteristic core structures in the brain network. This result indicates that our algorithm can be reliably applied to uncovering the essential network structures of the brain.


2019 ◽  
Vol 30 (3) ◽  
pp. 1528-1537 ◽  
Author(s):  
Min Xu ◽  
Xiuling Liang ◽  
Jian Ou ◽  
Hong Li ◽  
Yue-jia Luo ◽  
...  

Abstract Men and women process language differently, but how the brain functions to support this difference is poorly understood. A few studies reported sex influences on brain activation for language, whereas others failed to detect the difference at the functional level. Recent advances of brain network analysis have shown great promise in picking up brain connectivity differences between sexes, leading us to hypothesize that the functional connections among distinct brain regions for language may differ in males and females. To test this hypothesis, we scanned 58 participants’ brain activities (28 males and 30 females) in a semantic decision task using functional magnetic resonance imaging. We found marked sex differences in dynamic interactions among language regions, as well as in functional segregation and integration of brain networks during language processing. The brain network differences were further supported by a machine learning analysis that accurately discriminated males from females using the multivariate patterns of functional connectivity. The sex-specific functional brain connectivity may constitute an essential neural basis for the long-held notion that men and women process language in different ways. Our finding also provides important implications for sex differences in the prevalence of language disorders, such as dyslexia and stuttering.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Du Lei ◽  
Jun Ma ◽  
Jilei Zhang ◽  
Mengxing Wang ◽  
Kaihua Zhang ◽  
...  

Primary monosymptomatic nocturnal enuresis (PMNE) is a common developmental disorder in children. Previous literature has suggested that PMNE not only is a micturition disorder but also is characterized by cerebral structure abnormalities and dysfunction. However, the biological mechanisms underlying the disease are not thoroughly understood. Graph theoretical analysis has provided a unique tool to reveal the intrinsic attributes of the connectivity patterns of a complex network from a global perspective. Resting-state fMRI was performed in 20 children with PMNE and 20 healthy controls. Brain networks were constructed by computing Pearson’s correlations for blood oxygenation level-dependent temporal fluctuations among the 2 groups, followed by graph-based network analyses. The functional brain networks in the PMNE patients were characterized by a significantly lower clustering coefficient, global and local efficiency, and higher characteristic path length compared with controls. PMNE patients also showed a reduced nodal efficiency in the bilateral calcarine sulcus, bilateral cuneus, bilateral lingual gyri, and right superior temporal gyrus. Our findings suggest that PMNE includes brain network alterations that may affect global communication and integration.


2017 ◽  
Author(s):  
Holger Franz Sperdin ◽  
Ana Coito ◽  
Nada Kojovic ◽  
Tonia Rihs ◽  
Reem Kais Jan ◽  
...  

ABSTRACTSocial impairments are a hallmark of Autism Spectrum Disorders (ASD), but empirical evidence for early brain network alterations in response to social stimuli is scant in ASD. Here, we recorded the gaze patterns and brain activity of toddlers and preschoolers with ASD and their typically developing (TD) peers while they explored dynamic social scenes. Source-space directed functional connectivity analyses revealed the presence of network alterations in the theta frequency band, manifesting as increased driving (hyper-activity) and stronger connections (hyper-connectivity) from key nodes of the social brain associated with autism. Further analyses of brain-behavioural relationships within the ASD group suggested that compensatory mechanisms from dorsomedial frontal, inferior temporal and insular cortical regions were associated with lower clinical impairment and less atypical gaze patterns. Our results provide strong evidence that directed functional connectivity alterations of social brain networks is a core component of atypical brain development at early stages of ASD.


2020 ◽  
Author(s):  
Sahar Allouch ◽  
Maxime Yochum ◽  
Aya Kabbara ◽  
Joan Duprez ◽  
Mohamad Khalil ◽  
...  

AbstractUnderstanding the dynamics of brain-scale functional networks at rest and during cognitive tasks is the subject of intense research efforts to unveil fundamental principles of brain functions. To estimate these large-scale brain networks, the emergent method called “electroencephalography (EEG) source connectivity” has generated increasing interest in the network neuroscience community, due to its ability to identify cortical brain networks with good spatio-temporal resolution, while reducing mixing and volume conduction effects. However, the method is still immature and several methodological issues should be carefully accounted for to avoid pitfalls. Therefore, optimizing the EEG source connectivity pipelines is required, which involves the evaluation of several parameters. One key issue to address those evaluation aspects is the availability of a ‘ground truth’. In this paper, we show how a recently developed large-scale model of brain-scale activity, named COALIA, can provide to some extent such ground truth by providing realistic simulations (epileptiform activity) of source-level and scalp-level activity. Using a bottom-up approach, the model bridges cortical micro-circuitry and large-scale network dynamics. Here, we provide an example of the potential use of COALIA to analyze the effect of three key factors involved in the “EEG source connectivity” pipeline: (i) EEG sensors density, (ii) algorithm used to solve the inverse problem, and (iii) functional connectivity measure. Results show that a high electrode density (at least 64 channels) is needed to accurately estimate cortical networks. Regarding the inverse solution/connectivity measure combination, the best performance at high electrode density was obtained using the weighted minimum norm estimate (wMNE) combined with the weighted phase lag index (wPLI). The COALIA model and the simulations used in this paper are freely available and made accessible for the community. We believe that this model-based approach will help researchers to address some current and future cognitive and clinical neuroscience questions, and ultimately transform EEG brain network imaging into a mature technology.


2021 ◽  
Vol 11 (3) ◽  
pp. 374
Author(s):  
Tomoyo Morita ◽  
Minoru Asada ◽  
Eiichi Naito

Self-consciousness is a personality trait associated with an individual’s concern regarding observable (public) and unobservable (private) aspects of self. Prompted by previous functional magnetic resonance imaging (MRI) studies, we examined possible gray-matter expansions in emotion-related and default mode networks in individuals with higher public or private self-consciousness. One hundred healthy young adults answered the Japanese version of the Self-Consciousness Scale (SCS) questionnaire and underwent structural MRI. A voxel-based morphometry analysis revealed that individuals scoring higher on the public SCS showed expansions of gray matter in the emotion-related regions of the cingulate and insular cortices and in the default mode network of the precuneus and medial prefrontal cortex. In addition, these gray-matter expansions were particularly related to the trait of “concern about being evaluated by others”, which was one of the subfactors constituting public self-consciousness. Conversely, no relationship was observed between gray-matter volume in any brain regions and the private SCS scores. This is the first study showing that the personal trait of concern regarding public aspects of the self may cause long-term substantial structural changes in social brain networks.


Sign in / Sign up

Export Citation Format

Share Document