scholarly journals N95 respirators, disposable procedure masks and reusable cloth face coverings: total inward leakage and filtration efficiency of materials against aerosol

Author(s):  
Scott Duncan ◽  
Paul Bodurtha ◽  
Syed Naqvi

AbstractHumans expel physiological particles continuously through normal respiratory activities such as breathing, talking, coughing and sneezing; a portion of these are aerosol in the size range <5.0 µm. Misconceptions exist on how to best implement face coverings as an effective preventive health measure against potentially infectious respiratory generated aerosol. The aim of this study was to characterise the performance of face coverings against aerosol when worn by individuals, and to quantify the maximum aerosol penetration through the material used in the construction of each mask. The former addresses their use as a means of possible protection against aerosol present in the environment and the latter having relevance to filtration and reducing human generated aerosol from reaching the environment. Face covering performance was assessed by measuring the total inward leakage of aerosol through the mask material and face seal. Aerosol penetration was measured on swatches of material taken from the face covering. An inert polydisperse charge-neutralized NaCl aerosol, with a distribution ranging from 0.023 µm to 5 μm in diameter, was used for the experiments.Total inward leakage tests were completed to assess the protection factor for nine variations of face coverings, including seven reusable cloth masks, of which six were homemade and one was commercially manufactured, and two styles of disposable procedure masks, one with ear loops and one with ties. Our results have shown that face coverings in general provide the wearer only limited protection against aerosol in the environment. All reusable cloth face coverings obtained a practical protection level of less than 2. The performance of the disposable procedure masks varied from 1.7 to 3.6. The mean practical protection level for the nine face coverings was 1.95 with a standard deviation of 0.89. Comparatively, a N95 respirator achieved a protection factor of 166. We have further shown that aerosol readily penetrates through most materials used in face coverings. Aerosol swatch penetration tests were completed on six different fabrics commonly available for reusable homemade face coverings, four different material systems comprised of multiple material types, eight different disposable procedure masks and the filtering material from three different N95 respirators. Maximum aerosol penetration through the six common fabrics varied from 39% to 91%; for systems comprised of multiple types of materials 4% to 23%; for materials used in disposable procedure masks 16% to 80%; and for filtering materials used in N95 respirators 1.0% to 1.9%. We also highlight that with the exception of some of the reusable cloth materials, penetration of particulates at 5 µm diameter, representing the minimum filtration efficiency that could be achieved against droplets, was insignificant; the six common fabrics showed penetration from 1% to 44%; the fabric systems comprised of multiple types of materials <0.9%; the materials used in disposable procedure masks <0.9% to 6%; and the filtering materials used in three different N95 respirators <0.9%. The observations from this study directly demonstrate that face coverings may be optimized by incorporating high filtration efficiency materials in their construction. Face coverings with an enhanced level of filtration would be of benefit in circumstances where SARS-CoV-2 may be present in the aerosol of infected individuals to reduce aerosol emission from respiratory activities penetrating through into the environment.

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258191
Author(s):  
Scott Duncan ◽  
Paul Bodurtha ◽  
Syed Naqvi

Face coverings are a key component of preventive health measure strategies to mitigate the spread of respiratory illnesses. In this study five groups of masks were investigated that are of particular relevance to the SARS-CoV-2 pandemic: re-usable, fabric two-layer and multi-layer masks, disposable procedure/surgical masks, KN95 and N95 filtering facepiece respirators. Experimental work focussed on the particle penetration through mask materials as a function of particle diameter, and the total inward leakage protection performance of the mask system. Geometric mean fabric protection factors varied from 1.78 to 144.5 for the fabric two-layer and KN95 materials, corresponding to overall filtration efficiencies of 43.8% and 99.3% using a flow rate of 17 L/min, equivalent to a breathing expiration rate for a person in a sedentary or standing position conversing with another individual. Geometric mean total inward leakage protection factors for the 2-layer, multi-layer and procedure masks were <2.3, while 6.2 was achieved for the KN95 masks. The highest values were measured for the N95 group at 165.7. Mask performance is dominated by face seal leakage. Despite the additional filtering layers added to cloth masks, and the higher filtration efficiency of the materials used in disposable procedure and KN95 masks, the total inward leakage protection factor was only marginally improved. N95 FFRs were the only mask group investigated that provided not only high filtration efficiency but high total inward leakage protection, and remain the best option to protect individuals from exposure to aerosol in high risk settings. The Mask Quality Factor and total inward leakage performance are very useful to determine the best options for masking. However, it is highly recommended that testing is undertaken on prospective products, or guidance is sought from impartial authorities, to confirm they meet any implied standards.


Open Health ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 37-50
Author(s):  
Deepayan Gope ◽  
Aditya Gope ◽  
Prakash Chandra Gope

AbstractCOVID-19 viruses are primarily transmitted between people via respiratory droplets generated from an infected person while coughing, sneezing, exhaling or close contact. Hence, the use of masks are part of prevention and control measures to limit the spread of COVID-19. A comprehensive study on various materials used in masks is required. The filtration efficiency of cotton masks increases with increase in thread count and number of layers, but breathability is affected and therefore a risk for longer durations. Cotton-based masks have filtration efficiency ranging from 5% to 80% depending on the number of layers. Combinations of different hybrid fabric materials and design have an efficiency ranging from 37% to 97%. Bio-cellulose, which is derived from cellulosic biomass by synthesis techniques involving various physical and chemical processes followed by refining techniques, possesses remarkable properties including biodegradability, biocompatibility, low toxicity, etc., making it the most suitable mask material. Masks made of bio-cellulose have an important property of hydrophilicity which makes it adhere to the face tightly, giving a cooling effect to the face. Use of nanocellulose masks can help attaining filtration efficiency up to 99.9980–99.9995% along with other desirable properties. Hence, there is an immediate need to address the issues and challenges of mask materials and work towards the design and development of low cost masks to overcome these shortcomings by the researchers and manufacturers.


2017 ◽  
Vol 69 (1) ◽  
pp. 162-166 ◽  
Author(s):  
Ioan-Dan Popa ◽  
Florin Dobriţa

Abstract Tremendous amount of funds and other resorces were invested in studying the response of ceramic materials under ballistic impact, the main goal being to find a way to increase the protection of soldiers and the vehicles used in the modern battlespace. Using of ceramic materials especially carbon based (carbides), nitrogen based (nitrides) and oxygen based (oxides) ceramics in order to increase the protection level of ballistic equipment could be, sometimes, a big challenge when trying to use the proper test in order to evaluate and compare their performances. The role of the tests is to provide a better understanding of their response in different situations and, as a consequence, to make them more efficient as armour components through future improvements. The paper presents shortly the main tests which are used and eventually standardised for evaluating the ballistic behaviour of the ceramics and other armour components, with a special focus to DOP (Depth of Penetration) Tests.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
H. H. Zou ◽  
C. M. Song ◽  
M. Y. Wang ◽  
D. R. Wang ◽  
D. S. Wen

Composite materials have been demonstrated to possess excellent antipenetration capacities, but the existing studies have not involved the penetration characteristics of ceramic-concrete composite targets. To investigate the antipenetration mechanisms of fiber ceramic-reactive powder concrete (FC-RPC) composite targets, three pieces of FC-RPC composite targets were designed to perform penetration tests. Antipenetration tests were performed with a special howitzer with a diameter of 125 mm. The test parameters, such as the impact velocity, failure pattern of projectiles, penetration depth, crater diameter, and failure model of targets, were obtained. It was found that the FC-RPC targets exhibited an excellent antipenetration capacity and failed in a ductile manner, the target caused an obvious erosion effect on projectiles at low speed (i.e., 375 m/s), and the antipenetration performance of the composite target was improved by increasing the thickness of the FC target. Simultaneously, numerical simulations of FC-RPC targets subjected to projectile impact were carried out by using LS-DYNA codes. Separately, combined and integrated finite element models were used to analyze the effect of the fiber layer in the composite target. The numerical results of the combined model were in good agreement with the experimental data, and the reliabilities of simulation were validated. The differential protection factor of the FC-RPC targets was obtained based on the penetration tests and numerical simulation, and an empirical formula for multilayer targets was presented.


Author(s):  
Khaled S. Al-Hadyan ◽  
◽  
Ghazi A. Alsbeih Alsbeih ◽  
Najla M. Al-Harbi ◽  
Sara S. Bin Judia ◽  
...  

Wearing face masks have been implemented as a public and personal health control measure against the spread of coronavirus disease (COVID-19). However, the protection level of nonmedical face masks, such as women face veils, is still uncertain. This study aimed to assess the filtration efficiency (FE; percentage of particles retained by a mask) of different types of medical masks (either as sealed or unsealed, single or doubled), non-medical masks (cloth masks) and face veils. FE of face masks was evaluated using an in-house 3D-printed air duct connected to the Aerotrak particle counter with a capability of counting particle sizes of 0.3, 0.5, 0.7, 1, 2 and 5 μm. A set of 10 earloop surgical masks,10 tie-on surgical masks, 3 triple-layers reusable cloth masks and 3 types (short, medium and long) of traditional face veils were included in the study. The unsealed surgical masks showed intermediate FE (36.54-80.58%), with no observed differences between tie-on and earloop or single and doubled masks. For each mask type, the mean FE values of sealed surgical masks (FE≥99.16%) was significantly higher (P<0.001) than the unsealed ones (FE≤80.58%). No significant difference was observed in the mean FE values between unsealed surgical masks and either cloth masks (FE=23.19-75.35%, P=0.26) or face veils (FE=19.10- 70.68%, P=0.14). However, a mockup experiment showed that wearing a surgical mask under the face veil significantly improve the FE (33.73-79.18%; P<0.001). We conclude that besides sealed surgical masks that ensure optimal filtration under the experimental conditions, the unsealed surgical and cloth masks and face veils showed comparable performance and acceptable protection at 5 μm particle size, which is the most relevant particle size associated with COVID-19 infectious droplets. Wearing a surgical mask under the face veil significantly improves the FE compared to wearing a face veil alone.


Author(s):  
Amrita R. John ◽  
Shine Raju ◽  
Jennifer L. Cadnum ◽  
Kipum Lee ◽  
Phillip McClellan ◽  
...  

AbstractBackgroundCritical shortages of personal protective equipment (PPE) especially N95 respirators, during the SARS-CoV-2 pandemic continues to be a source of great concern among health care workers (HCWs). Novel methods of N95 filtering facepiece respirator (FFR) decontamination that can be scaled-up for in-hospital use can help address this concern and keep HCWs safe.MethodsA multidisciplinary pragmatic study was conducted to evaluate the use of an ultrasonic room high-level disinfection system (HLDS) that generates aerosolized peracetic acid (PAA) and hydrogen peroxide for decontamination of large numbers of N95 respirators. A cycle duration that consistently achieved disinfection of N95 respirators (defined as ≤ 6 log10 reductions in bacteriophage MS2 and Geobacillus stearothermophilus spores inoculated onto respirators) was identified. The treated masks were then assessed for changes to their hydrophobicity, material structure, strap elasticity, and filtration efficiency (FE). Assessment of PAA off-gassing from a treated mask was also performed.ResultsThe PAA room HLDS was effective for disinfection of N95 respirators in a 2447 cubic feet room with deploy and dwell times of 16 and 32 minutes respectively, and a total cycle time of 1 hour and 16 minutes. After 5 treatment cycles, no adverse effects were detected on filtration efficiency, structural integrity, or strap elasticity. There was no detectable off-gassing of PAA from the treated masks.ConclusionThe PAA room disinfection system provides a rapidly scalable solution for in-hospital decontamination of large numbers of N95 respirators to meet the needs of HCWs during the SARS-CoV-2 pandemic.


2021 ◽  
Author(s):  
Susanta Mandal

Abstract This paper addresses the key issues that go into the making of a heavy truck wherein steel made parts are used in the making of a chassis , so here the challenge for both for the bodyframe designer of the automobile industry and the sheet metal designer of the steel industry to come up with solutions that not only addresses problems relating to the lowering of the weight but also making it strong enough to bear enough loads taking into account changes in materials used , kinematics – differences in body angles that affects the velocity of the actions directed , how parts connected not only in the truck but also in the processes followed including changes in design and thereafter the prototypes to be tried out in the face of oncoming changes . A pentagonal framework that includes open cost modelling as well a business model that talks of creating a value streams in consonance with the changes for the uncertain future has been included.


2020 ◽  
Author(s):  
Albert I. Nazeeri ◽  
Isaac A. Hilburn ◽  
Daw-An Wu ◽  
Kabir A. Mohammed ◽  
D. Yovan Badal ◽  
...  

AbstractA critical shortage of respirators, masks and other personal protective equipment (PPE) exists due to the COVID-19 pandemic. Of particular need are N95 respirators, which use meltblown microfibers of charged polypropylene. An intensive search is underway to find reliable methods to lengthen the useful life of these normally disposable units.Recent experiments on respirators cleaned with ethanol solutions found drastic post-treatment drops infiltration efficiency (>40%). This has been attributed to a mechanism whereby ethanol disrupts the charges in the microfibers, reducing their ability to trap particles. The CDC/NIOSH has issued guidance directing clinicians and researchers to pursue other methods of decontamination.In our experiments, we replicated the drop in efficiency after 70% ethanol treatment, but we found that the efficiency rose again after more effective drying, which we achieved with a vacuum chamber. After drying at pressures of < ∼6 mbar (0.6 kPa), the measured filtering efficiency rose to within 2% of the pre-washing value, and we found that this was sustained for 5 cleaning-drying cycles in three models of N95 masks. We stress that our tests are not meant to certify that the respirators are safe for use, which would require further, standardized, testing under NIOSH protocols. The tests presented here are used to understand basic mechanisms by which treatments can decrease or increase filtration efficiency.The main mechanism underlying the loss and recovery of filter efficiency seems to be the deposition and removal of water molecules adsorbed on the fiber surfaces, a hypothesis which is supported by several observations: (A) the filtering efficiency increases non-linearly with the weight loss during drying. (B) filtration efficiency shows an abrupt recovery as the vacuum pressure drops from 13 to 6 mbar, the range physically attributable to the removal of adsorbed water. (C) Optical microscopy of the microfiber layer reveals surface wetting of the fibers, which is most resistant to drying in dense regions of the fiber network. These observations indicate that losses in filter efficiency may be caused by the wicking of water into the dense fiber networks, reducing the available surface area for filtration.Such a degradation mechanism has two implications: (A) Ethanol and other aqueous decontamination methods may be more viable than previously assumed. Investigations of such methods should specify drying methods in their protocols. We employ vacuum chambers in this study, but other methods of removing adsorbed water could be equivalent. (B) This mechanism presents the possibility that mask filtration performance may be subject to degradation by other sources of moisture, and that the mask would continue to be compromised even if it appears dry. Further research is needed to determine the conditions under which such risks apply, and whether drying should be a routine practice for respirators undergoing extended use.This study introduces a number of methods which could be developed and validated for use in resource-limited settings. As the pandemic continues to spread in rural areas and developing nations, these would allow for local efforts to decontaminate, restore, and test medical masks.


2021 ◽  
Vol 21 ◽  
pp. 200571
Author(s):  
Karin Ardon-Dryer ◽  
Juliusz Warzywoda ◽  
Rumeysa Tekin ◽  
Jnev Biros ◽  
Sharilyn Almodovar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document