scholarly journals In-silico analysis of differentially expressed genes and their regulating microRNA involved in lymph node metastasis in invasive breast carcinoma

Author(s):  
Anupama Modi ◽  
Purvi Purohit ◽  
Ashita Gadwal ◽  
Shweta Ukey ◽  
Dipayan Roy ◽  
...  

AbstractIntroductionAxillary nodal metastasis is related to poor prognosis in breast cancer (BC). The metastatic progression in BC is related to molecular signatures. The currently popular methods to evaluate nodal status may give false negatives or give rise to secondary complications. In this study, key candidate genes in BC lymph node metastasis have been identified from publicly available microarray datasets and their roles in BC have been explored through survival analysis and target prediction.MethodsGene Expression Omnibus datasets have been analyzed for differentially expressed genes (DEGs) in lymph node-positive BC patients compared to nodal-negative and healthy tissues. The functional enrichment analysis was done in database for annotation, visualization and integrated discovery (DAVID). Protein-protein interaction (PPI) network was constructed in Search Tool for the Retrieval of Interacting Genes and proteins (STRING) and visualized on Cytoscape. The candidate hub genes were identified and their expression analyzed for overall survival (OS) in Gene Expression Profiling Interactive Analysis (GEPIA). The target miRNA and transcription factors were analyzed through miRNet.ResultsA total of 102 overlapping DEGs were found. Gene Ontology revealed eleven, seventeen, and three significant terms for cellular component, biological process, and molecular function respectively. Six candidate genes, DSC3, KRT5, KRT6B, KRT17, KRT81, and SERPINB5 were significantly associated with nodal metastasis and OS in BC patients. A total of 83 targeting miRNA were identified through miRNet and hsa-miR-155-5p was found to be the most significant miRNA which was targeting five out of six hub genes.ConclusionIn-silico survival and expression analyses revealed six candidate genes and 83 miRNAs, which may be potential diagnostic markers and therapeutic targets in BC patients and miR-155-5p shows promise as it targeted five important hub genes related to lymph-node metastasis.

2021 ◽  
Vol 11 (2) ◽  
pp. 126
Author(s):  
Noshad Peyravian ◽  
Stefania Nobili ◽  
Zahra Pezeshkian ◽  
Meysam Olfatifar ◽  
Afshin Moradi ◽  
...  

This study aimed at building a prognostic signature based on a candidate gene panel whose expression may be associated with lymph node metastasis (LNM), thus potentially able to predict colorectal cancer (CRC) progression and patient survival. The mRNA expression levels of 20 candidate genes were evaluated by RT-qPCR in cancer and normal mucosa formalin-fixed paraffin-embedded (FFPE) tissues of CRC patients. Receiver operating characteristic curves were used to evaluate the prognosis performance of our model by calculating the area under the curve (AUC) values corresponding to stage and metastasis. A total of 100 FFPE primary tumor tissues from stage I–IV CRC patients were collected and analyzed. Among the 20 candidate genes we studied, only the expression levels of VANGL1 significantly varied between patients with and without LNMs (p = 0.02). Additionally, the AUC value of the 20-gene panel was found to have the highest predictive performance (i.e., AUC = 79.84%) for LNMs compared with that of two subpanels including 5 and 10 genes. According to our results, VANGL1 gene expression levels are able to estimate LNMs in different stages of CRC. After a proper validation in a wider case series, the evaluation of VANGL1 gene expression and that of the 20-gene panel signature could help in the future in the prediction of CRC progression.


2015 ◽  
Author(s):  
Nurul-Syakima Ab Mutalib ◽  
Sri Noraima Othman ◽  
Azliana Mohamad Yusof ◽  
Shahrun Niza Abdullah Suhaimi ◽  
Rohaizak Muhammad ◽  
...  

Background: Papillary thyroid carcinoma (PTC) is the commonest thyroid malignancy originating from the follicle cells in the thyroid. Despite a good overall prognosis, certain high-risk cases as in those with lymph node metastasis (LNM) have progressive disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19-24 nucleotides single-stranded RNAs which regulate gene expression and these molecules have been shown to play a role in LNM. The integrated analysis of miRNAs and gene expression profiles together with transcription factors (TFs) has been shown to improve the identification of functional miRNA-target gene-TF relationships, providing a more complete view of molecular events underlying metastasis process. Objectives: We reanalyzed The Cancer Genome Atlas (TCGA) datasets on PTC to identify differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P) versus lymph node negative (LNN) PTC patients and to investigate the miRNA-gene-TF regulatory circuit that regulate LNM in PTC. Results: PTC patients with LNM (PTC LNM-P) has significantly shorter disease-free survival rate compared to PTC patients without LNM (PTC LNN) (Log-rank Mantel Cox test, p = 0.0049). We identified 181 significantly differentially expressed miRNAs in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated. The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400 miRNAs were differentially expressed between PTC LNN and normal thyroid. We found 4 significant enrichment pathways potentially involved in metastasis to the lymph nodes namely oxidative phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte transendothelial migration and cytokine-cytokine receptor interaction. OxPhos was the most significantly perturbed pathway (p = 4.70E-06) involving downregulation of 90 OxPhos-related genes. Significant interaction of hsa-miR-301b with HLF, HIF and REL/NFkB transcription factors were identified exclusively in PTC LNM-P versus PTC LNN. Conclusion: We found evidence of five miRNAs differentially expressed in PTC LNM-P. Alteration in OxPhos pathway could be the central event in metastasis to the lymph node in PTC. We postulate that hsa-miR-301b might be involved in regulating LNM in PTC via interactions with HLF, HIF and REL/NFkB. To the best of our knowledge, the roles of these TFs have been studied in PTC but the precise role of this miRNA with these TFs in LNM in PTC has not been investigated.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2119 ◽  
Author(s):  
Nurul-Syakima Ab Mutalib ◽  
Sri Noraima Othman ◽  
Azliana Mohamad Yusof ◽  
Shahrun Niza Abdullah Suhaimi ◽  
Rohaizak Muhammad ◽  
...  

Background. Papillary thyroid carcinoma (PTC) is the commonest thyroid malignancy originating from the follicle cells in the thyroid. Despite a good overall prognosis, certain high-risk cases as in those with lymph node metastasis (LNM) have progressive disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19-24 nucleotides single-stranded RNAs which regulate gene expression and these molecules have been shown to play a role in LNM. The integrated analysis of miRNAs and gene expression profiles together with transcription factors (TFs) has been shown to improve the identification of functional miRNA-target gene-TF relationships, providing a more complete view of molecular events underlying metastasis process.Objectives. We reanalyzed The Cancer Genome Atlas (TCGA) datasets on PTC to identify differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P) versus lymph node negative (LNN) PTC patients and to investigate the miRNA-gene-TF regulatory circuit that regulate LNM in PTC.Results. PTC patients with LNM (PTC LNM-P) have a significantly shorter disease-free survival rate compared to PTC patients without LNM (PTC LNN) (Log-rank Mantel Cox test,p= 0.0049). We identified 181 significantly differentially expressed miRNAs in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated. The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400 miRNAs were differentially expressed between PTC LNN and normal thyroid. We found four significant enrichment pathways potentially involved in metastasis to the lymph nodes, namely oxidative phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte transendothelial migration and cytokine--cytokine receptor interaction. OxPhos was the most significantly perturbed pathway (p= 4.70E−06) involving downregulation of 90 OxPhos-related genes. Significant interaction of hsa-miR-301b with HLF, HIF and REL/NFkB transcription factors were identified exclusively in PTC LNM-P versus PTC LNN.Conclusion. We found evidence of five miRNAs differentially expressed in PTC LNM-P. Alteration in OxPhos pathway could be the central event in metastasis to the lymph node in PTC. We postulate that hsa-miR-301b might be involved in regulating LNM in PTC via interactions with HLF, HIF and REL/NFkB. To the best of our knowledge, the roles of these TFs have been studied in PTC but the precise role of this miRNA with these TFs in LNM in PTC has not been investigated.


2015 ◽  
Author(s):  
Nurul-Syakima Ab Mutalib ◽  
Sri Noraima Othman ◽  
Azliana Mohamad Yusof ◽  
Shahrun Niza Abdullah Suhaimi ◽  
Rohaizak Muhammad ◽  
...  

Background: Papillary thyroid carcinoma (PTC) is the commonest thyroid malignancy originating from the follicle cells in the thyroid. Despite a good overall prognosis, certain high-risk cases as in those with lymph node metastasis (LNM) have progressive disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19-24 nucleotides single-stranded RNAs which regulate gene expression and these molecules have been shown to play a role in LNM. The integrated analysis of miRNAs and gene expression profiles together with transcription factors (TFs) has been shown to improve the identification of functional miRNA-target gene-TF relationships, providing a more complete view of molecular events underlying metastasis process. Objectives: We reanalyzed The Cancer Genome Atlas (TCGA) datasets on PTC to identify differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P) versus lymph node negative (LNN) PTC patients and to investigate the miRNA-gene-TF regulatory circuit that regulate LNM in PTC. Results: PTC patients with LNM (PTC LNM-P) has significantly shorter disease-free survival rate compared to PTC patients without LNM (PTC LNN) (Log-rank Mantel Cox test, p = 0.0049). We identified 181 significantly differentially expressed miRNAs in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated. The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400 miRNAs were differentially expressed between PTC LNN and normal thyroid. We found 4 significant enrichment pathways potentially involved in metastasis to the lymph nodes namely oxidative phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte transendothelial migration and cytokine-cytokine receptor interaction. OxPhos was the most significantly perturbed pathway (p = 4.70E-06) involving downregulation of 90 OxPhos-related genes. Significant interaction of hsa-miR-301b with HLF, HIF and REL/NFkB transcription factors were identified exclusively in PTC LNM-P versus PTC LNN. Conclusion: We found evidence of five miRNAs differentially expressed in PTC LNM-P. Alteration in OxPhos pathway could be the central event in metastasis to the lymph node in PTC. We postulate that hsa-miR-301b might be involved in regulating LNM in PTC via interactions with HLF, HIF and REL/NFkB. To the best of our knowledge, the roles of these TFs have been studied in PTC but the precise role of this miRNA with these TFs in LNM in PTC has not been investigated.


Oral Oncology ◽  
2011 ◽  
Vol 47 ◽  
pp. S46
Author(s):  
F.K.J. Leusink ◽  
P.J. Slootweg ◽  
M.W.M. van den Brekel ◽  
R.J. Baatenburg de Jong ◽  
F.C.P. Holstege ◽  
...  

1998 ◽  
Vol 114 ◽  
pp. A623
Author(s):  
HR Kim ◽  
SJ Pang ◽  
HY Jung ◽  
WS Hong ◽  
YI Min ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document