scholarly journals Reduced listener-speaker neural coupling underlies speech understanding difficulty in older adults

2020 ◽  
Author(s):  
Lanfang Liu ◽  
Hehui Li ◽  
Xiaowei Ding ◽  
Qi Zhou ◽  
Dingguo Gao ◽  
...  

AbstractAn increasing body of studies have highlighted the importance of listener-speaker neural coupling in successful speech communication. How this mechanism may change with normal aging and the association of this change with age-related decline in speech understanding remain unexplored. In this study, we scanned with fMRI a young and an older speaker telling real-life stories, and then played the audio recordings to groups of young (N = 28, aged 19-27y) and older adults (N = 27, aged 58-75y) during scanning, respectively. The older listeners understood the story worse than the young, and the advancing age of the older listeners was associated with poorer speech understanding. Compared to the young listener-speaker dyads, the older dyads exhibited weaker neural couplings in both linguistic and extra-linguistic areas. Moreover, within the older group, the listener’s age was negatively correlated with the overall strength of interbrain coupling, which in turn was associated with poorer speech understanding. These results reveal the deficits of older adults in achieving neural alignment with other brains, which may underlie the age-related decline in speech understanding.

2021 ◽  
Author(s):  
lanfang liu ◽  
Xiaowei Ding ◽  
Hehui Li ◽  
Qi Zhou ◽  
Dingguo Gao ◽  
...  

Abstract An increasing number of studies have highlighted the importance of listener-speaker neural coupling in successful verbal communication. Whether the brain-to-brain coupling changes with healthy aging and the possible role of this change in the speech comprehension of older adults remain unexplored. In this study, we scanned with fMRI a young and an older speaker telling real-life stories, and then played the audio recordings to a group of young (N = 28, aged 19-27y) and a group of older adults during scanning (N = 27, aged 53-75y), respectively. The older listeners understood the speech less well than did the young listeners, and the age of the older listeners was negatively correlated with their level of speech understanding. Compared to the young listener-speaker dyads, the older dyads exhibited reduced neural couplings in both linguistic and extra-linguistic areas. Moreover, within the older group, the listener’s age was negatively correlated with the overall strength of interbrain coupling, which in turn was associated with reduced speech understanding. These results reveal the deficits of older adults in achieving neural alignment with other brains, which may underlie the age-related decline in speech understanding.


2004 ◽  
Vol 47 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Stephanie K. Daniels ◽  
David M. Corey ◽  
Leslie D. Hadskey ◽  
Calli Legendre ◽  
Daniel H. Priestly ◽  
...  

Recent research has revealed differences between isolated and sequential swallowing in healthy young adults; however, the influence of normal aging on sequential swallowing has not been studied. Thus, the purpose of this investigation was to examine the effects of normal aging on deglutition during sequential straw drinking. Videofluoroscopic samples of two 10-s straw drinking trials were obtained for 20 healthy young men (age 29±3 years) and 18 healthy older men (age 69±7 years). Hyolaryngeal complex (HLC) movement patterns, leading edge of the bolus location at swallow onset, and occurrences of airway invasion were determined. Two HLC patterns were identified: (a) HLC lowering with the epiglottis returned to upright between swallows and (b) partially maintained HLC elevation with the epiglottis inverted between swallows. The bolus was frequently in the hypopharynx at swallow onset. Strong associations were identified between age and HLC pattern, age and leading edge of the bolus location, and HLC pattern and leading edge location. Laryngeal penetration was uncommon overall; however, it occurred more frequently in the older adults than in the young adults. A significant relation was identified between age and the average Penetration-Aspiration Scale score. Laryngeal penetration was associated with both HLC movement patterns and hypopharyngeal bolus location, particularly in older adults. Results indicate that subtle age-related differences are evident in healthy young and older adults with sequential straw drinking. These data suggest that specific inherent swallowing patterns may increase the risk of laryngeal penetration with normal aging.


1994 ◽  
Vol 37 (3) ◽  
pp. 629-644 ◽  
Author(s):  
Pierre Goulet ◽  
Bernadette Ska ◽  
Helen J. Kahn

This review of 25 studies of the picture-naming accuracy of normal aging individuals shows that an age-related decline in picture naming is an inconsistent finding. Naming performance of older adults varied throughout the studies reviewed in this paper. This variability is attributed to the research methods used and to subject characteristics. To date, there are no studies that have considered all “nuisance factors” (e.g., health status, medication) in such a way that would allow support for a decrease in picture-naming accuracy associated with primary aging.


Author(s):  
Jessica R. Andrews-Hanna ◽  
Matthew D. Grilli ◽  
Muireann Irish

The brain’s default network (DN) has received considerable interest in the context of so-called “normal” and pathological aging. Findings have generally been couched in support of a pessimistic view of brain aging, marked by substantial loss of structural brain integrity accompanied by a host of impairments in brain and cognitive function. A critical look at the literature, however, reveals that the standard loss of integrity, loss of function (LILF) view in normal aging may not necessarily hold with respect to the DN and the internally guided functions it supports. Many internally guided processes subserved by the DN are preserved or enhanced in cognitively healthy older adults. Moreover, differences in motivational, contextual, and physiological factors between young and older adults likely influence the extant neuroimaging and cognitive findings. Accordingly, normal aging can be viewed as a series of possibly adaptive cognitive and DN-related alterations that bolster cognitive function and promote socioemotional well-being and stability in a stage of life noted for change. On the other hand, the available evidence reveals strong support for the LILF view of the DN in neurodegenerative disorders, whereby syndromes such as Alzheimer’s disease (AD) and semantic dementia (SD), characterized by progressive atrophy to distinct DN subsystems, display distinct aberrations in autobiographical and semantic cognition. Taken together, these findings call for more naturalistic, age-appropriate, and longitudinal paradigms when investigating neurocognitive changes in aging and to adequately assess and control for differences in non-neural factors that may obscure “true” effects of normal and pathological aging. A shift in the framework with which age-related alterations in internally guided cognition are interpreted may shed important light on the neurocognitive mechanisms differentiating healthy and pathological aging, leading to a more complete picture of the aging brain in all its complexity.


Author(s):  
Emma V. Ward ◽  
David R. Shanks

It is well documented that explicit (declarative, conscious) memory declines in normal aging. Studies have shown a progressive reduction in this form of memory with age, and healthy older adults (typically aged 65+ years) usually perform worse than younger adults (typically aged 18–30 years) on laboratory tests of explicit memory such as recall and recognition. In contrast, it is less clear whether implicit (procedural, unconscious) memory declines or remains stable in normal aging. Implicit memory is evident when previous experiences affect (e.g., facilitate) performance on tasks that do not require conscious recollection of those experiences. This can manifest in rehearsed motor skills, such as playing a musical instrument, but is typically indexed in the laboratory by the greater ease with which previously studied information is processed relative to non-studied information (e.g., repetition priming). While a vast amount of research has accumulated to suggest that implicit memory remains relatively stable over the adult lifespan, and is similar in samples of young and older adults, other studies have in contrast revealed that implicit memory is subject to age-related decline. Improving methods for determining whether implicit memory declines or remains stable with age is an important goal for future research, as the issue not only has significant implications for an aging society regarding interventions likely to ameliorate the effects of age-related explicit memory decline, but can also inform our theoretical understanding of human memory systems.


2020 ◽  
Vol 12 ◽  
Author(s):  
Ehsan Darestani Farahani ◽  
Jan Wouters ◽  
Astrid van Wieringen

Speech understanding problems are highly prevalent in the aging population, even when hearing sensitivity is clinically normal. These difficulties are attributed to changes in central temporal processing with age and can potentially be captured by age-related changes in neural generators. The aim of this study is to investigate age-related changes in a wide range of neural generators during temporal processing in middle-aged and older persons with normal audiometric thresholds. A minimum-norm imaging technique is employed to reconstruct cortical and subcortical neural generators of temporal processing for different acoustic modulations. The results indicate that for relatively slow modulations (<50 Hz), the response strength of neural sources is higher in older adults than in younger ones, while the phase-locking does not change. For faster modulations (80 Hz), both the response strength and the phase-locking of neural sources are reduced in older adults compared to younger ones. These age-related changes in temporal envelope processing of slow and fast acoustic modulations are possibly due to loss of functional inhibition, which is accompanied by aging. Both cortical (primary and non-primary) and subcortical neural generators demonstrate similar age-related changes in response strength and phase-locking. Hemispheric asymmetry is also altered in older adults compared to younger ones. Alterations depend on the modulation frequency and side of stimulation. The current findings at source level could have important implications for the understanding of age-related changes in auditory temporal processing and for developing advanced rehabilitation strategies to address speech understanding difficulties in the aging population.


2013 ◽  
Vol 25 (2) ◽  
pp. 188-202 ◽  
Author(s):  
Viola S. Störmer ◽  
Shu-Chen Li ◽  
Hauke R. Heekeren ◽  
Ulman Lindenberger

Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (∼100–300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100–125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125–150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175–210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruno Bonnechère ◽  
Malgorzata Klass ◽  
Christelle Langley ◽  
Barbara Jacquelyn Sahakian

AbstractManaging age-related decrease of cognitive function is an important public health challenge, especially in the context of the global aging of the population. Over the last years several Cognitive Mobile Games (CMG) have been developed to train and challenge the brain. However, currently the level of evidence supporting the benefits of using CMG in real-life use is limited in older adults, especially at a late age. In this study we analyzed game scores and the processing speed obtained over the course of 100 sessions in 12,000 subjects aged 60 to over 80 years. Users who trained with the games improved regardless of age in terms of scores and processing speed throughout the 100 sessions, suggesting that old and very old adults can improve their cognitive performance using CMG in real-life use.


2021 ◽  
pp. 174702182110233
Author(s):  
Martin Riemer ◽  
Thomas Wolbers ◽  
Hedderik van Rijn

Reduced timing abilities have been reported in older adults and are associated with pathological cognitive decline. However, time perception experiments often lack ecological validity. Especially the reduced complexity of experimental stimuli and the participants’ awareness of the time-related nature of the task can influence lab-assessed timing performance and thereby conceal age-related differences. An approximation of more naturalistic paradigms can provide important information about age-related changes in timing abilities. To determine the impact of higher ecological validity on timing experiments, we implemented a paradigm that allowed us to test (i) the effect of embedding the to-be-timed stimuli within a naturalistic visual scene, and (ii) the effect of retrospective time judgments, which are more common in real life than prospective judgments. The results show that, compared to out-of-context stimuli, younger adults benefit from a naturalistic embedding of stimuli (reflected in higher precision and less errors), whereas the performance of older adults is reduced when confronted with naturalistic stimuli. Differences between retrospective and prospective time judgments were not modulated by age. We conclude that, potentially driven by difficulties in suppressing temporally irrelevant environmental information, the contextual embedding of naturalistic stimuli can affect the degree to which age influences the performance in time perception tasks.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hoda Allahbakhshi ◽  
Christina Röcke ◽  
Robert Weibel

Increasing the amount of physical activity (PA) in older adults that have shifted to a sedentary lifestyle is a determining factor in decreasing health and social costs. It is, therefore, imperative to develop objective methods that accurately detect daily PA types and provide detailed PA guidance for healthy aging. Most of the existing techniques have been applied in the younger generation or validated in the laboratory. To what extent, these methods are transferable to real-life and older adults are a question that this paper aims to answer. Sixty-three participants, including 33 younger and 30 older healthy adults, participated in our study. Each participant wore five devices mounted on the left and right hips, right knee, chest, and left pocket and collected accelerometer and GPS data in both semi-structured and real-life environments. Using this dataset, we developed machine-learning models to detect PA types walking, non-level walking, jogging/running, sitting, standing, and lying. Besides, we examined the accuracy of the models within-and between-age groups applying different scenarios and validation approaches. The within-age models showed convincing classification results. The findings indicate that due to age-related behavioral differences, there are more confusion errors between walking, non-level walking, and running in older adults’ results. Using semi-structured training data, the younger adults’ models outperformed older adults’ models. However, using real-life training data alone or in combination with semi-structured data generated better results for older adults who had high real-life data quality. Assessing the transferability of the models to older adults showed that the models trained with younger adults’ data were only weakly transferable. However, training the models with a combined dataset of both age groups led to reliable transferability of results to the data of the older subgroup. We show that age-related behavioral differences can alter the PA classification performance. We demonstrate that PA type detection models that rely on combined datasets of young and older adults are strongly transferable to real-life and older adults’ data. Our results yield significant time and cost savings for future PA studies by reducing the overall volume of training data required.


Sign in / Sign up

Export Citation Format

Share Document