scholarly journals Cholecystokinin-like Peptide Mediates Satiety by Inhibiting Sugar Attraction

2020 ◽  
Author(s):  
Di Guo ◽  
Yi-jie Zhang ◽  
Su Zhang ◽  
Jian Li ◽  
Chao Guo ◽  
...  

Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. This Gr64f regulation is by direct action of SK neurons on Gr64f-expressing neurons of the proboscis and proleg tarsi that co-express the SK receptor CCKLR-17D3. Our findings thus demonstrate how nutritional state induces peptide signaling to modulate sweet perception and thereby feeding behavior.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009724
Author(s):  
Di Guo ◽  
Yi-Jie Zhang ◽  
Su Zhang ◽  
Jian Li ◽  
Chao Guo ◽  
...  

Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. Interestingly, we found that one of the two known SK receptors, CCKLR-17D3, is expressed by some of Gr64f-expressing neurons in the proboscis and proleg tarsi. Thus, we have identified SK as a neuropeptide signal in a neuronal circuitry that responds to food intake, and regulates feeding behavior by diminishing gustatory receptor gene expression and activity of sweet sensing GRNs. Our findings demonstrate one nutritional state-dependent pathway that modulates sweet perception and thereby feeding behavior, but our experiments cannot exclude further parallel pathways. Importantly, we show that the underlying mechanisms are conserved in the two distantly related insect species.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Sophie Wiszniak ◽  
Quenten Schwarz

Vascular endothelial growth factor A (VEGF-A or VEGF) is a highly conserved secreted signalling protein best known for its roles in vascular development and angiogenesis. Many non-endothelial roles for VEGF are now established, with the discovery that VEGF and its receptors VEGFR1 and VEGFR2 are expressed in many non-vascular cell-types, as well as various cancers. In addition to secreted VEGF binding to its receptors in the extracellular space at the cell membrane (i.e., in a paracrine or autocrine mode), intracellularly localised VEGF is emerging as an important signalling molecule regulating cell growth, survival, and metabolism. This intracellular mode of signalling has been termed “intracrine”, and refers to the direct action of a signalling molecule within the cell without being secreted. In this review, we describe examples of intracrine VEGF signalling in regulating cell growth, differentiation and survival, both in normal cell homeostasis and development, as well as in cancer. We further discuss emerging evidence for the molecular mechanisms underpinning VEGF intracrine function, as well as the implications this intracellular mode of VEGF signalling may have for use and design of anti-VEGF cancer therapeutics.


2008 ◽  
Vol 62 (3-4) ◽  
pp. 133-142 ◽  
Author(s):  
Mirjana Joksimovic-Todorovic ◽  
Slavca Hristov ◽  
Vesna Davidovic ◽  
Renata Relic ◽  
Branislav Stankovic

Behavior of cattle is a simple and easily established indicator of their health condition, production characteristics and welfare, showing whether and how the animal has adapted to the maintenance conditions. Essentially, all forms of cattle behavior are accompanied by certain physiological changes in the organism, and the basic moving forces of behavior are congenital. The moving forces of behavior of cattle are narrowed down to a certain number of biological needs (the need for food, water, sexual and other biological needs) and congenital urges and instincts, such as the combative and maternal instincts. Cattle are grazing animals and they cannot exhibit all their congenital natural activities of behavior under intensive maintenance conditions. Different internal and external stimuli influence the types of behavior of cattle, changing the motivational activities of their organism. In the course of domestication, certain forms of behavior of cattle have sustained changes, some have adapted to the new conditions, and new ones have appeared as well. The social, reproductive, maternal, and feeding behavior of cattle in closed maintenance conditions has not changed fundamentally, but the model of its manifesting has changed. Furthermore, certain disorders in the behavior of cattle also appear as a consequence of the maintenance conditions, and they can also be of hereditary character. In order to promote welfare, cattle should be enabled to exhibit their natural behavior, but they should also be provided with an environment that has natural characteristics.


2018 ◽  
Vol 19 (9) ◽  
pp. 2567 ◽  
Author(s):  
Joanna Konieczny ◽  
Lorena Arranz

Blood formation, or haematopoiesis, originates from haematopoietic stem cells (HSCs), whose functions and maintenance are regulated in both cell- and cell non-autonomous ways. The surroundings of HSCs in the bone marrow create a specific niche or microenvironment where HSCs nest that allows them to retain their unique characteristics and respond rapidly to external stimuli. Ageing is accompanied by reduced regenerative capacity of the organism affecting all systems, due to the progressive decline of stem cell functions. This includes blood and HSCs, which contributes to age-related haematological disorders, anaemia, and immunosenescence, among others. Furthermore, chronological ageing is characterised by myeloid and platelet HSC skewing, inflammageing, and expanded clonal haematopoiesis, which may be the result of the accumulation of preleukaemic lesions in HSCs. Intriguingly, haematological malignancies such as acute myeloid leukaemia have a high incidence among elderly patients, yet not all individuals with clonal haematopoiesis develop leukaemias. Here, we discuss recent work on these aspects, their potential underlying molecular mechanisms, and the first cues linking age-related changes in the HSC niche to poor HSC maintenance. Future work is needed for a better understanding of haematopoiesis during ageing. This field may open new avenues for HSC rejuvenation and therapeutic strategies in the elderly.


Author(s):  
Stephen J. Simpson ◽  
David Raubenheimer

This chapter focuses on how animals are able to regulate their intake and use of multiple nutrients. To regulate the balance of nutrients eaten, an animal needs to assess the composition of available foods in relation to its nutritional requirements. Integration of information about food composition and nutritional state occurs both at the periphery, by nutrient-specific modulation of taste receptors, and more centrally as signals from systemic and peripheral sources converge onto the neural circuits that control feeding behavior. Meanwhile, postingestive regulatory responses can assist in rebalancing an imbalanced nutrient intake. Once digested and absorbed across the gut, nutrient supplies can be further rebalanced by differentially voiding excess nutrients and conserving nutrients that are in limited supply.


2019 ◽  
Vol 20 (3) ◽  
pp. 526 ◽  
Author(s):  
Mohammad Hossain ◽  
Marina Bakri ◽  
Farhana Yahya ◽  
Hiroshi Ando ◽  
Shumpei Unno ◽  
...  

Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.


Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 57
Author(s):  
Xu Ding ◽  
Xi Huang ◽  
Litong Sun ◽  
Jincai Wu ◽  
Jinglan Liu

Fluridone (FLU) was a pyrrolidone herbicide that was used for selective weeding in wheat, rice, corn and pasture and was also a biosynthesis inhibitor of abscisic acid (ABA), a significant plant hormone. ABA-promoted callose deposition facilitates rice resistance to pests but whether FLU had the opposite influence was unknown. The effects of FLU on the feeding behavior of the brown planthopper (Nilaparvata lugens Stål; BPH), after feeding with rice plants treated with FLU, were studied, using an electrical penetration graph (EPG). For susceptible rice cultivar (TN1), the duration for which BPH sucked phloem sap (N4 wave duration) after 15 μmol/L of FLU treatment was longer than that of the control but decreased after 30 and 60 μmol/L FLU treatments. Fecundity of BPH treated with 15 μmol/L FLU had no significant change, while the deposition area of callose was significantly decreased. For moderately-resistant rice cultivar (IR42), no differences in BPH feeding behavior and fecundity were observed but the deposition area of callose declined after treated with 15 μmol/L of FLU. These findings suggested that a low concentration of FLU (15 μmol/L) promoted BPH feeding behavior in TN1 but not in IR42 and the response in IR42 appeared to be more complicated, which provided supplementary evidence that ABA promoted plant resistance to BPH.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Satyabrata Nanda ◽  
San-Yue Yuan ◽  
Feng-Xia Lai ◽  
Wei-Xia Wang ◽  
Qiang Fu ◽  
...  

Abstract Rice production and sustainability are challenged by its most dreadful pest, the brown planthopper (Nilaparvata lugens Stål, BPH). Therefore, the studies on rice-BPH interactions and their underlying mechanisms are of high interest. The rice ontogenetic defense, such as the role of microRNAs (miRNAs) has mostly been investigated against the pathogens, with only a few reports existing against the insect infestations. Thus, revealing the involvement of rice miRNAs in response to BPH infestations will be beneficial in understanding these complex interactions. In this study, the small RNA profiling of the IR56 rice in response to separate BPH infestations of varied virulence levels identified the BPH-responsive miRNAs and revealed the differential transcript abundance of several miRNAs during a compatible and incompatible rice-BPH interaction. The miRNA sequence analysis identified 218 known and 28 novel miRNAs distributed in 54 miRNA families. Additionally, 138 and 140 numbers of differentially expressed (DE) miRNAs were identified during the compatible and incompatible interaction, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the target gene candidates of DE miRNAs (including osa-miR2871a-3p, osa-miR172a, osa-miR166a-5p, osa-miR2120, and osa-miR1859) that might be involved in the IR56 rice defense responses against BPH infestation. Conversely, osa-miR530-5p, osa-miR812s, osa-miR2118g, osa-miR156l-5p, osa-miR435 and two of the novel miRNAs, including novel_16 and novel_52 might negatively modulate the IR56 rice defense. The expressional validation of the selected miRNAs and their targets further supported the IR56 rice defense regulatory network. Based on our results, we have proposed a conceptual model depicting the miRNA defense regulatory network in the IR56 rice against BPH infestation. The findings from the study add further insights into the molecular mechanisms of rice-BPH interactions and will be helpful for the future researches.


2020 ◽  
Vol 14 ◽  
Author(s):  
Helia Cheng ◽  
Schuyler J. Pablico ◽  
Jisu Lee ◽  
Ji Suk Chang ◽  
Sangho Yu

The central nervous system controls feeding behavior and energy expenditure in response to various internal and external stimuli to maintain energy balance. Here we report that the newly identified transcription factor zinc finger and BTB domain containing 16 (Zbtb16) is induced by energy deficit in the paraventricular (PVH) and arcuate (ARC) nuclei of the hypothalamus via glucocorticoid (GC) signaling. In the PVH, Zbtb16 is expressed in the anterior half of the PVH and co-expressed with many neuronal markers such as corticotropin-releasing hormone (Crh), thyrotropin-releasing hormone (Trh), oxytocin (Oxt), arginine vasopressin (Avp), and nitric oxide synthase 1 (Nos1). Knockdown (KD) of Zbtb16 in the PVH results in attenuated cold-induced thermogenesis and improved glucose tolerance without affecting food intake. In the meantime, Zbtb16 is predominantly expressed in agouti-related neuropeptide/neuropeptide Y (Agrp/Npy) neurons in the ARC and its KD in the ARC leads to reduced food intake. We further reveal that chemogenetic stimulation of PVH Zbtb16 neurons increases energy expenditure while that of ARC Zbtb16 neurons increases food intake. Taken together, we conclude that Zbtb16 is an important mediator that coordinates responses to energy deficit downstream of GCs by contributing to glycemic control through the PVH and feeding behavior regulation through the ARC, and additionally reveal its function in controlling energy expenditure during cold-evoked thermogenesis via the PVH. As a result, we hypothesize that Zbtb16 may be involved in promoting weight regain after weight loss.


Sign in / Sign up

Export Citation Format

Share Document