scholarly journals In vivo coupling of dendritic complexity with presynaptic density in primary tauopathies

Author(s):  
Elijah Mak ◽  
Negin Holland ◽  
P. Simon Jones ◽  
George Savulich ◽  
Audrey Low ◽  
...  

ABSTRACTUnderstanding the cellular underpinnings of neurodegeneration remains a challenge; loss of synapses and dendritic arborisation are characteristic and can be quantified in vivo, with [11C]UCB-J PET and MRI-based Orientation Dispersion Imaging (ODI), respectively. We aimed to assess how both measures are correlated, in 4R-tauopathies of Progressive Supranuclear Palsy (PSP-RS; n = 22) and amyloid-negative (determined by [11C]PiB PET) Corticobasal Degeneration (CBD; n =14), as neurodegenerative disease models, in this proof-of-concept study. Compared to controls (n = 27), PSP-RS and CBD patients had widespread reductions in cortical ODI, and [11C]UCB-J non-displaceable binding potential (BPND) in excess of atrophy. In PSP-RS and CBD separately, regional cortical ODI was significantly associated with [11C]UCB-J BPND in disease-associated regions (p < 0.05, FDR corrected). Our findings indicate that reductions in synaptic density and dendritic complexity in PSP-RS and CBD are more severe and extensive than atrophy. Furthermore, both measures are tightly coupled in vivo, furthering our understanding of the pathophysiology of neurodegeneration, and applicable to studies of early neurodegeneration with a safe and widely available MRI platform.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Toshiki Tezuka ◽  
Keisuke Takahata ◽  
Morinobu Seki ◽  
Hajime Tabuchi ◽  
Yuki Momota ◽  
...  

Abstract Tau aggregates represent a key pathologic feature of Alzheimer’s disease and other neurodegenerative diseases. Recently, PET probes have been developed for in vivo detection of tau accumulation; however, they are limited because of off-target binding and a reduced ability to detect tau in non-Alzheimer’s disease tauopathies. The novel tau PET tracer, [18F]PI-2620, has a high binding affinity and specificity for aggregated tau; therefore, it was hypothesized to have desirable properties for the visualization of tau accumulation in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. To assess the ability of [18F]PI-2620 to detect regional tau burden in non-Alzheimer’s disease tauopathies compared with Alzheimer’s disease, patients with progressive supranuclear palsy (n = 3), corticobasal syndrome (n = 2), corticobasal degeneration (n = 1) or Alzheimer’s disease (n = 8), and healthy controls (n = 7) were recruited. All participants underwent MRI, amyloid β assessment and [18F]PI-2620 PET (Image acquisition at 60–90 min post-injection). Cortical and subcortical tau accumulations were assessed by calculating standardized uptake value ratios using [18F]PI-2620 PET. For pathologic validation, tau pathology was assessed using tau immunohistochemistry and compared with [18F]PI-2620 retention in an autopsied case of corticobasal degeneration. In Alzheimer’s disease, focal retention of [18F]PI-2620 was evident in the temporal and parietal lobes, precuneus, and cingulate cortex. Standardized uptake value ratio analyses revealed that patients with non-Alzheimer’s disease tauopathies had elevated [18F]PI-2620 uptake only in the globus pallidus, as compared to patients with Alzheimer’s disease, but not healthy controls. A head-to-head comparison of [18F]PI-2620 and [18F]PM-PBB3, another tau PET probe for possibly visualizing the four-repeat tau pathogenesis in non-Alzheimer’s disease, revealed different retention patterns in one subject with progressive supranuclear palsy. Imaging-pathology correlation analysis of the autopsied patient with corticobasal degeneration revealed no significant correlation between [18F]PI-2620 retention in vivo. High [18F]PI-2620 uptake at 60–90 min post-injection in the globus pallidus may be a sign of neurodegeneration in four-repeat tauopathy, but not necessarily practical for diagnosis of non-Alzheimer’s disease tauopathies. Collectively, this tracer is a promising tool to detect Alzheimer’s disease-tau aggregation. However, late acquisition PET images of [18F]PI-2620 may have limited utility for reliable detection of four-repeat tauopathy because of lack of correlation between post-mortem tau pathology and different retention pattern than the non-Alzheimer’s disease-detectable tau radiotracer, [18F]PM-PBB3. A recent study reported that [18F]PI-2620 tracer kinetics curves in four-repeat tauopathies peak earlier (within 30 min) than Alzheimer’s disease; therefore, further studies are needed to determine appropriate PET acquisition times that depend on the respective interest regions and diseases.


2021 ◽  
Vol 101 ◽  
pp. 187-198
Author(s):  
Elijah Mak ◽  
Negin Holland ◽  
P. Simon Jones ◽  
George Savulich ◽  
Audrey Low ◽  
...  

2019 ◽  
Author(s):  
Maura Malpetti ◽  
Luca Passamonti ◽  
Timothy Rittman ◽  
P. Simon Jones ◽  
Patricia Vázquez Rodríguez ◽  
...  

AbstractBackgroundProgressive Supranuclear Palsy (PSP) is associated with tau-protein aggregation and neuroinflammation, but it remains unclear whether these pathogenic processes are related in vivo.ObjectivesWe examined the relationship between tau pathology and microglial activation using [18F]AV-1451 (indexing tau burden) and [11C]PK11195 (microglial activation) PET in n=17 patients with PSP-Richardson’s syndrome.MethodsNon-displaceable binding potential (BPND) for each ligand was quantified in 83 regions of interest (ROIs). [18F]AV-1451 and [11C]PK11195 BPND values were correlated across all ROIs. The anatomical patterns of [18F]AV-1451 and [11C]PK11195 binding co-localization was determined across sets of regions derived from principal component analyses (PCAs). Finally, PCA-derived brain patterns of tau pathology and neuroinflammation were linked to clinical severity.Results[18F]AV-1451 and [11C]PK11195 binding were positively related across all ROIs (r=0.577, p<0.0001). PCAs identified four components for each ligand, reflecting the relative expression of tau pathology or neuroinflammation in distinct groups of brain regions. Positive associations between [18F]AV-1451 and [11C]PK11195 components were found in sub-cortical (r=0.769, p<0.0001) and cortical components(r=0.836, p<0.0001). PCA-derived components reflecting tau burden (r=0.599, p=0.011) and neuroinflammation (r=0.713, p=0.001) in sub-cortical areas related to disease severity.ConclusionsWe show that tau pathology and neuroinflammation co-localize in PSP, and that individual differences in subcortical tau pathology and neuroinflammation are linked to clinical severity. Although longitudinal studies are needed to determine how these molecular pathologies are causally linked, we suggest that the combination of tau- and immune-oriented strategies may be useful for effective disease-modifying treatments in PSP.


Brain ◽  
2019 ◽  
Vol 142 (7) ◽  
pp. 2068-2081 ◽  
Author(s):  
Salvatore Spina ◽  
Jesse A Brown ◽  
Jersey Deng ◽  
Raquel C Gardner ◽  
Alissa L Nana ◽  
...  

Abstract Neurodegenerative dementia syndromes are characterized by spreading of pathological protein deposition along syndrome-specific neural networks. Structural and functional MRI measures can assess the integrity of these networks and have been proposed as biomarkers of disease progression for clinical trials. The relationship between in vivo imaging measures and pathological features, at the single subject level, remains largely unknown. Patient-specific maps of atrophy and seed-based intrinsic connectivity disruption, as compared to normal controls, were obtained for 27 patients subsequently diagnosed with progressive supranuclear palsy (n = 16, seven males, age at death 68.9 ± 6.0 years, imaging-to-pathology interval = 670.2 ± 425.1 days) or corticobasal degeneration (n = 11, two males, age at death 66.7 ± 5.4 years, imaging-to-pathology interval = 696.2 ± 482.2 days). A linear mixed effect model with crossed random effects was used to test regional and single-subject level associations between post-mortem regional measures of neurodegeneration and tau inclusion burden, on the one hand, and regional volume loss and seed-based intrinsic connectivity reduction, on the other. A significant association was found between tau inclusion burden and in vivo volume loss, at the regional level and independent of neurodegeneration severity, in both progressive supranuclear palsy [n = 340 regions; beta 0.036; 95% confidence interval (CI): 0.001, 0.072; P = 0.046] and corticobasal degeneration (n = 215 regions; beta 0.044; 95% CI: 0.009, 0.079; P = 0.013). We also found a significant association between post-mortem neurodegeneration and in vivo volume loss in both progressive supranuclear palsy (n = 340 regions; beta 0.155; 95% CI: 0.061, 0.248; P = 0.001) and corticobasal degeneration (n = 215 regions; beta 0.277; 95% CI: 0.104, 0.450; P = 0.002). We found a significant association between regional neurodegeneration and intrinsic connectivity dysfunction in corticobasal degeneration (n = 215 regions; beta 0.074; 95% CI: 0.005, 0.143; P = 0.035), but no other associations between post-mortem measures of tauopathy and intrinsic connectivity dysfunction reached statistical significance. Our data suggest that in vivo structural imaging measures reflect independent contributions from neurodegeneration and tau burden in progressive supranuclear palsy and corticobasal degeneration. Seed-based measures of intrinsic connectivity dysfunction showed less reliable predictive value when used as in vivo biomarkers of tauopathy. The findings provide important guidance for the use of imaging biomarkers as indirect in vivo assays of microscopic pathology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marjolein Ensinck ◽  
Angélique Mottais ◽  
Claire Detry ◽  
Teresinha Leal ◽  
Marianne S. Carlon

Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and in vivo disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Alternatively, with these tools more relevant disease models can be generated, which in turn will be invaluable to evaluate novel gene editing-based therapies for CF. This critical review offers a comprehensive description of currently available tools for genome editing, and the cell and animal models which are available to evaluate them. Next, we will give an extensive overview of proof-of-concept applications of gene editing in the field of CF. Finally, we will touch upon the challenges that need to be addressed before these proof-of-concept studies can be translated towards a therapy for people with CF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hansol Lee ◽  
Myung Jun Lee ◽  
Eun-Joo Kim ◽  
Gi Yeong Huh ◽  
Jae-Hyeok Lee ◽  
...  

AbstractAbnormal iron accumulation around the substantia nigra (SN) is a diagnostic indicator of Parkinsonism. This study aimed to identify iron-related microarchitectural changes around the SN of brains with progressive supranuclear palsy (PSP) via postmortem validations and in vivo magnetic resonance imaging (MRI). 7 T high-resolution MRI was applied to two postmortem brain tissues, from one normal brain and one PSP brain. Histopathological examinations were performed to demonstrate the molecular origin of the high-resolution postmortem MRI findings, by using ferric iron staining, myelin staining, and two-dimensional laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging. In vivo iron-related MRI was performed on five healthy controls, five patients with Parkinson’s disease (PD), and five patients with PSP. In the postmortem examination, excessive iron deposition along the myelinated fiber at the anterior SN and third cranial nerve (oculomotor nerve) fascicles of the PSP brain was verified by LA-ICP-MS. This region corresponded to those with high R2* values and positive susceptibility from quantitative susceptibility mapping (QSM), but was less sensitive in Perls’ Prussian blue staining. In in vivo susceptibility-weighted imaging, hypointense pixels were observed in the region between the SN and red nucleus (RN) in patients with PSP, but not in healthy controls and patients with PD. R2* and QSM values of such region were significantly higher in patients with PSP compared to those in healthy controls and patients with PD as well (vs. healthy control: p = 0.008; vs. PD: p = 0.008). Thus, excessive iron accumulation along the myelinated fibers at the anterior SN and oculomotor nerve fascicles may be a pathological characteristic and crucial MR biomarker in a brain with PSP.


Author(s):  
Johanna Rokka ◽  
Eva Schlein ◽  
Jonas Eriksson

Abstract Introduction [11C]UCB-J is a tracer developed for PET (positron emission tomography) that has high affinity towards synaptic vesicle glycoprotein 2A (SV2A), a protein believed to participate in the regulation of neurotransmitter release in neurons and endocrine cells. The localisation of SV2A in the synaptic terminals makes it a viable target for in vivo imaging of synaptic density in the brain. Several SV2A targeting compounds have been evaluated as PET tracers, including [11C]UCB-J, with the aim to facilitate studies of synaptic density in neurological diseases. The original two-step synthesis method failed in our hands to produce sufficient amounts of [11C]UCB-J, but served as an excellent starting point for further optimizations towards a high yielding and simplified one-step method. [11C]Methyl iodide was trapped in a clear THF-water solution containing the trifluoroborate substituted precursor, potassium carbonate and palladium complex. The resulting reaction mixture was heated at 70 °C for 4 min to produce [11C]UCB-J. Results After semi-preparative HPLC purification and reformulation in 10% ethanol/phosphate buffered saline, the product was obtained in 39 ± 5% radiochemical yield based on [11C]methyl iodide, corresponding to 1.8 ± 0.5 GBq at EOS. The radiochemical purity was > 99% and the molar activity was 390 ± 180 GBq/μmol at EOS. The product solution contained < 2 ppb palladium. Conclusions A robust and high yielding production method has been developed for [11C]UCB-J, suitable for both preclinical and clinical PET applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Keith A. Josephs ◽  
Joseph R. Duffy ◽  
Heather M. Clark ◽  
Rene L. Utianski ◽  
Edythe A. Strand ◽  
...  

AbstractProgressive apraxia of speech is a neurodegenerative syndrome affecting spoken communication. Molecular pathology, biochemistry, genetics, and longitudinal imaging were investigated in 32 autopsy-confirmed patients with progressive apraxia of speech who were followed over 10 years. Corticobasal degeneration and progressive supranuclear palsy (4R-tauopathies) were the most common underlying pathologies. Perceptually distinct speech characteristics, combined with age-at-onset, predicted specific 4R-tauopathy; phonetic subtype and younger age predicted corticobasal degeneration, and prosodic subtype and older age predicted progressive supranuclear palsy. Phonetic and prosodic subtypes showed differing relationships within the cortico-striato-pallido-nigro-luysial network. Biochemical analysis revealed no distinct differences in aggregated 4R-tau while tau H1 haplotype frequency (69%) was lower compared to 1000+ autopsy-confirmed 4R-tauopathies. Corticobasal degeneration patients had faster rates of decline, greater cortical degeneration, and shorter illness duration than progressive supranuclear palsy. These findings help define the pathobiology of progressive apraxia of speech and may have consequences for development of 4R-tau targeting treatment.


2021 ◽  
Vol 11 (1) ◽  
pp. 119
Author(s):  
Vasilios C. Constantinides ◽  
Nour K. Majbour ◽  
George P. Paraskevas ◽  
Ilham Abdi ◽  
Bared Safieh-Garabedian ◽  
...  

Total CSF α-synuclein (t-α-syn), phosphorylated α-syn (pS129-α-syn) and α-syn oligomers (o-α-syn) have been studied as candidate biomarkers for synucleinopathies, with suboptimal specificity and sensitivity in the differentiation from healthy controls. Studies of α-syn species in patients with other underlying pathologies are lacking. The aim of this study was to investigate possible alterations in CSF α-syn species in a cohort of patients with diverse underlying pathologies. A total of 135 patients were included, comprising Parkinson’s disease (PD; n = 13), multiple system atrophy (MSA; n = 9), progressive supranuclear palsy (PSP; n = 13), corticobasal degeneration (CBD; n = 9), Alzheimer’s disease (AD; n = 51), frontotemporal degeneration (FTD; n = 26) and vascular dementia patients (VD; n = 14). PD patients exhibited higher pS129-α-syn/α-syn ratios compared to FTD (p = 0.045), after exclusion of samples with CSF blood contamination. When comparing movement disorders (i.e., MSA vs. PD vs. PSP vs. CBD), MSA patients had lower α-syn levels compared to CBD (p = 0.024). Patients with a synucleinopathy (PD and MSA) exhibited lower t-α-syn levels (p = 0.002; cut-off value: ≤865 pg/mL; sensitivity: 95%, specificity: 69%) and higher pS129-/t-α-syn ratios (p = 0.020; cut-off value: ≥0.122; sensitivity: 71%, specificity: 77%) compared to patients with tauopathies (PSP and CBD). There are no significant α-syn species alterations in non-synucleinopathies.


Sign in / Sign up

Export Citation Format

Share Document