scholarly journals YhcB (DUF1043), a novel cell division protein conserved across gamma-proteobacteria

2021 ◽  
Author(s):  
Jitender Mehla ◽  
George Liechti ◽  
Randy M Morgenstern ◽  
J. Harry Caufield ◽  
Ali Hosseinnia ◽  
...  

YhcB, an uncharacterized protein conserved across gamma-proteobacteria, is composed predominantly of a single Domain of Unknown Function (DUF 1043) with an N-terminal transmembrane alpha-helix. Here, we show that E. coli YhcB is a conditionally essential protein that interacts with the proteins of the cell divisome (e.g., FtsI, FtsQ) and elongasome (e.g., RodZ, RodA). We found 7 interactions of YhcB that are conserved in Yersinia pestis and/or Vibrio cholerae. Furthermore, we identified several point mutations that abolished interactions of YhcB with FtsI and RodZ. The YhcB knock-out strain does not grow at 45C and is hypersensitive to cell-wall acting antibiotics even in stationary phase. The deletion of yhcB leads to filamentation, abnormal FtsZ ring formation, and aberrant septa development. The 2.8 angstrom crystal structure for the cytosolic domain from Haemophilus ducreyi YhcB shows a unique tetrameric alpha-helical coiled-coil structure that combines parallel and anti-parallel coiled-coil intersubunit interactions. This structure is likely to organize interprotein oligomeric interactions on the inner surface of the cytoplasmic membrane, possibly involved in regulation of cell division and/or envelope biogenesis/integrity in proteobacteria. In summary, YhcB is a conserved and conditionally essential protein that is predicted to play a role in cell division and consequently or in addition affects envelope biogenesis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuu Asano ◽  
Kensuke Yamashita ◽  
Aoi Hasegawa ◽  
Takanori Ogasawara ◽  
Hoshie Iriki ◽  
...  

AbstractThe powerful genome editing tool Streptococcus pyogenes Cas9 (SpCas9) requires the trinucleotide NGG as a protospacer adjacent motif (PAM). The PAM requirement is limitation for precise genome editing such as single amino-acid substitutions and knock-ins at specific genomic loci since it occurs in narrow editing window. Recently, SpCas9 variants (i.e., xCas9 3.7, SpCas9-NG, and SpRY) were developed that recognise the NG dinucleotide or almost any other PAM sequences in human cell lines. In this study, we evaluated these variants in Dictyostelium discoideum. In the context of targeted mutagenesis at an NG PAM site, we found that SpCas9-NG and SpRY were more efficient than xCas9 3.7. In the context of NA, NT, NG, and NC PAM sites, the editing efficiency of SpRY was approximately 60% at NR (R = A and G) but less than 22% at NY (Y = T and C). We successfully used SpRY to generate knock-ins at specific gene loci using donor DNA flanked by 60 bp homology arms. In addition, we achieved point mutations with efficiencies as high as 97.7%. This work provides tools that will significantly expand the gene loci that can be targeted for knock-out, knock-in, and precise point mutation in D. discoideum.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 559
Author(s):  
Ana Claudia Guerra Araujo ◽  
Patricia Messenberg Guimaraes ◽  
Ana Paula Zotta Mota ◽  
Larissa Arrais Guimaraes ◽  
Bruna Medeiros Pereira ◽  
...  

DUF538 proteins belong to a large group of uncharacterized protein families sharing the highly conserved Domain of Unknown Function (DUF). Attention has been given to DUF538 domain-containing proteins due to changes in their gene expression behavior and protein abundance during plant development and responses to stress. Putative roles attributed to DUF538 in plants under abiotic and biotic constraints include involvement in cell redox balance, chlorophyll breakdown and pectin degradation. Our previous transcriptome studies suggested that DUF538 is also involved in the resistance responses of wild Arachis species against the highly hazardous root-knot nematodes (RKNs). To clarify the role of the AsDUF538 gene from the wild peanut relative Arachis stenosperma in this interaction, we analyzed the effect of its overexpression on RKN infection in peanut and soybean hairy roots and Arabidopsis transgenic plants. AsDUF538 overexpression significantly reduced the infection in all three heterologous plant systems against their respective RKN counterparts. The distribution of AsDUF538 transcripts in RKN-infected Arachis roots and the effects of AsDUF538 overexpression on hormonal pathways and redox system in transgenic Arabidopsis were also evaluated. This is the first time that a DUF538 gene is functionally validated in transgenic plants and the earliest report on its role in plant defense against RKNs.


2017 ◽  
Vol 474 (18) ◽  
pp. 3189-3205 ◽  
Author(s):  
Ashoka Chary Taviti ◽  
Tushar Kant Beuria

Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC–FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix resulted in a decrease in the FtsZ affinity towards MinD. Based on our findings, we propose a novel model for MinCD–FtsZ interaction, where MinD through its direct interaction with FtsZ would trigger MinC activity to inhibit FtsZ functions.


2002 ◽  
Vol 8 (2) ◽  
pp. 87-98 ◽  
Author(s):  
David H. Vandorpe ◽  
Sabine Wilhelm ◽  
Lianwei Jiang ◽  
Oxana Ibraghimov-Beskrovnaya ◽  
Marina N. Chernova ◽  
...  

Polycystin-1 (PKD1) mutations account for ∼85% of autosomal dominant polycystic kidney disease (ADPKD). We have shown previously that oocyte surface expression of a transmembrane fusion protein encoding part of the cytoplasmic COOH terminus of PKD1 increases activity of a Ca2+-permeable cation channel. We show here that human ADPKD mutations incorporated into this fusion protein attenuated or abolished encoded cation currents. Point mutations and truncations showed that cation current expression requires integrity of a region encompassing the putative coiled coil domain of the PKD1 cytoplasmic tail. Whereas these loss-of-function mutants did not exhibit dominant negative phenotypes, coexpression of a fusion protein expressing the interacting COOH-terminal cytoplasmic tail of PKD2 did suppress cation current. Liganding of the ectodomain of the PKD1 fusion protein moderately activated cation current. The divalent cation permeability and pharmacological profile of the current has been extended. Inducible expression of the PKD1 fusion in EcR-293 cells was also associated with activation of cation channels and increased Ca2+ entry.


2009 ◽  
Vol 191 (8) ◽  
pp. 2815-2825 ◽  
Author(s):  
Mark D. Gonzalez ◽  
Jon Beckwith

ABSTRACT Cell division in bacteria requires the coordinated action of a set of proteins, the divisome, for proper constriction of the cell envelope. Multiple protein-protein interactions are required for assembly of a stable divisome. Within the Escherichia coli divisome is a conserved subcomplex of inner membrane proteins, the FtsB/FtsL/FtsQ complex, which is necessary for linking the upstream division proteins, which are predominantly cytoplasmic, with the downstream division proteins, which are predominantly periplasmic. FtsB and FtsL are small bitopic membrane proteins with predicted coiled-coil motifs, which themselves form a stable subcomplex that can recruit downstream division proteins independently of FtsQ; however, the details of how FtsB and FtsL interact together and with other proteins remain to be characterized. Despite the small size of FtsB, we identified separate interaction domains of FtsB that are required for interaction with FtsL and FtsQ. The N-terminal half of FtsB is necessary for interaction with FtsL and sufficient, when in complex with FtsL, for recruitment of downstream division proteins, while a portion of the FtsB C terminus is necessary for interaction with FtsQ. These properties of FtsB support the proposal that its main function is as part of a molecular scaffold to allow for proper formation of the divisome.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Diego Gonzalez ◽  
Justine Collier

ABSTRACTCcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group ofAlphaproteobacteria.InCaulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, thatC. crescentuscan significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrMpopulations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulatedftsZexpression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrMmutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulatesftsZandmipZtranscription, uncovering a previously unsuspected link between metabolic regulation and cell division inAlphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrMcells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM.IMPORTANCEIn bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness inCaulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of theftsZcell division gene. This finding suggests that the most critical function of CcrM inC. crescentusis to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to otherAlphaproteobacteria.


2017 ◽  
Vol 58 (2) ◽  
pp. 67-78 ◽  
Author(s):  
L G Perez-Rivas ◽  
Y Rhayem ◽  
S Sabrautzki ◽  
C Hantel ◽  
B Rathkolb ◽  
...  

In an attempt to define novel genetic loci involved in the pathophysiology of primary aldosteronism, a mutagenesis screen after treatment with the alkylating agent N-ethyl-N-nitrosourea was established for the parameter aldosterone. One of the generated mouse lines with hyperaldosteronism was phenotypically and genetically characterized. This mouse line had high aldosterone levels but normal creatinine and urea values. The steroidogenic enzyme expression levels in the adrenal gland did not differ significantly among phenotypically affected and unaffected mice. Upon exome sequencing, point mutations were identified in seven candidate genes (Sspo, Dguok, Hoxaas2, Clstn3, Atm, Tipin and Mapk6). Subsequently, animals were stratified into wild-type and mutated groups according to their genotype for each of these candidate genes. A correlation of their genotypes with the respective aldosterone, aldosterone-to-renin ratio (ARR), urea and creatinine values as well as steroidogenic enzyme expression levels was performed. Aldosterone values were significantly higher in animals carrying mutations in four different genes (Sspo, Dguok, Hoxaas2 and Clstn3) and associated statistically significant adrenal Cyp11b2 overexpression as well as increased ARR was present only in mice with Sspo mutation. In contrast, mutations of the remaining candidate genes (Atm, Tipin and Mapk6) were associated with lower aldosterone values and lower Hsd3b6 expression levels. In summary, these data demonstrate association between the genes Sspo, Dguok, Hoxaas2 and Clstn3 and hyperaldosteronism. Final proofs for the causative nature of the mutations have to come from knock-out and knock-in experiments.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Lok-To Sham ◽  
Katelyn R. Jensen ◽  
Kevin E. Bruce ◽  
Malcolm E. Winkler

ABSTRACT The FtsEX protein complex has recently been proposed to play a major role in coordinating peptidoglycan (PG) remodeling by hydrolases with the division of bacterial cells. According to this model, cytoplasmic FtsE ATPase interacts with the FtsZ divisome and FtsX integral membrane protein and powers allosteric activation of an extracellular hydrolase interacting with FtsX. In the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus), a large extracellular-loop domain of FtsX (ECL1FtsX) is thought to interact with the coiled-coil domain of the PcsB protein, which likely functions as a PG amidase or endopeptidase required for normal cell division. This paper provides evidence for two key tenets of this model. First, we show that FtsE protein is essential, that depletion of FtsE phenocopies cell defects caused by depletion of FtsX or PcsB, and that changes of conserved amino acids in the FtsE ATPase active site are not tolerated. Second, we show that temperature-sensitive (Ts) pcsB mutations resulting in amino acid changes in the PcsB coiled-coil domain (CCPcsB) are suppressed by ftsX mutations resulting in amino acid changes in the distal part of ECL1FtsX or in a second, small extracellular-loop domain (ECL2FtsX). Some FtsX suppressors are allele specific for changes in CCPcsB, and no FtsX suppressors were found for amino acid changes in the catalytic PcsB CHAP domain (CHAPPcsB). These results strongly support roles for both ECL1FtsX and ECL2FtsX in signal transduction to the coiled-coil domain of PcsB. Finally, we found that pcsB CC(Ts) mutants (Ts mutants carrying mutations in the region of pcsB corresponding to the coiled-coil domain) unexpectedly exhibit delayed stationary-phase autolysis at a permissive growth temperature. IMPORTANCE Little is known about how FtsX interacts with cognate PG hydrolases in any bacterium, besides that ECL1FtsX domains somehow interact with coiled-coil domains. This work used powerful genetic approaches to implicate a specific region of pneumococcal ECL1FtsX and the small ECL2FtsX in the interaction with CCPcsB. These findings identify amino acids important for in vivo signal transduction between FtsX and PcsB for the first time. This paper also supports the central hypothesis that signal transduction between pneumococcal FtsX and PcsB is linked to ATP hydrolysis by essential FtsE, which couples PG hydrolysis to cell division. The classical genetic approaches used here can be applied to dissect interactions of other integral membrane proteins involved in PG biosynthesis. Finally, delayed autolysis of the pcsB CC(Ts) mutants suggests that the FtsEX-PcsB PG hydrolase may generate a signal in the PG necessary for activation of the major LytA autolysin as pneumococcal cells enter stationary phase.


2003 ◽  
Vol 12 (2) ◽  
pp. 257-265 ◽  
Author(s):  
Kaushik Dutta ◽  
Frank A. Engler ◽  
Levaughn Cotton ◽  
Andrei Alexandrov ◽  
Gurrinder S. Bedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document