scholarly journals Ibrutinib as a Potential Therapeutic for Cocaine Use Disorder

Author(s):  
Spencer B. Huggett ◽  
Jeffrey S. Hatfield ◽  
Joshua D. Walters ◽  
John E. McGeary ◽  
Justine W. Welsh ◽  
...  

ABSTRACTCocaine use presents a worldwide public health problem with high socioeconomic cost. Current treatments for cocaine use disorder (CUD) are suboptimal and rely primarily on behavioral interventions. To explore pharmaceutical treatments for CUD, we analyzed genome-wide gene expression data from publically availble human brain tissues (midbrain, hippocampus and prefrontal cortex neurons) from 71 individuals (mean age = 39.9, 100% male, 36 with CUD and 35 matched controls). We leveraged the L1000 database to investigate molecular associations between neuronal mRNA profiles from 825 repurposable compounds (e.g., FDA approved) with human CUD gene expression in the brain. We identified 16 compounds that were negatively associated with CUD gene expression patterns across all brain regions (padj < 0.05), all of which outperformed current targets undergoing clinical trials for CUD (all padj > 0.05). We tested the effectiveness of these compounds using independent transcriptome-wide in vitro (neuronal cocaine exposure; n=18) and in vivo (mouse cocaine self-administration; prefrontal cortex, hippocampus and midbrain; n = 12-15) datasets. Among these medications, Ibrutinib demonstrated negative associations with both neuronal cocaine exposure and mouse cocaine self-administration. To obtain experimental confirmation of therapeutic effects of Ibrutinib on CUD, we used the Drosophila melanogaster model, which enables highthroughput quantification of behavioral responses in defined genetic backgrounds and controlled environmental conditions. Ibrutinib altered cocaine-induced changes in startle response and reduced the occurrence of cocaine-induced seizures (n = 61-142 per group; sex: 51%female). Our results identify Ibrutinib, an FDA approved medication, as a potential therapeutic for cocaine neurotoxicity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Spencer B. Huggett ◽  
Jeffrey S. Hatfield ◽  
Joshua D. Walters ◽  
John E. McGeary ◽  
Justine W. Welsh ◽  
...  

AbstractCocaine use presents a worldwide public health problem with high socioeconomic cost. No current pharmacologic treatments are available for cocaine use disorder (CUD) or cocaine toxicity. To explore pharmaceutical treatments for tthis disorder and its sequelae we analyzed gene expression data from post-mortem brain tissue of individuals with CUD who died from cocaine-related causes with matched cocaine-free controls (n = 71, Mage = 39.9, 100% male, 49% with CUD, 3 samples/brain regions). To match molecular signatures from brain pathology with potential therapeutics, we leveraged the L1000 database honing in on neuronal mRNA profiles of 825 repurposable compounds (e.g., FDA approved). We identified 16 compounds that were negatively associated with CUD gene expression patterns across all brain regions (padj < 0.05), all of which outperformed current targets undergoing clinical trials for CUD (all padj > 0.05). An additional 43 compounds were positively associated with CUD expression. We performed an in silico follow-up potential therapeutics using independent transcriptome-wide in vitro (neuronal cocaine exposure; n = 18) and in vivo (mouse cocaine self-administration; n = 12–15) datasets to prioritize candidates for experimental validation. Among these medications, ibrutinib was consistently linked with the molecular profiles of both neuronal cocaine exposure and mouse cocaine self-administration. We assessed the therapeutic efficacy of ibrutinib using the Drosophila melanogaster model. Ibrutinib reduced cocaine-induced startle response and cocaine-induced seizures (n = 61–142 per group; sex: 51% female), despite increasing cocaine consumption. Our results suggest that ibrutinib could be used for the treatment of cocaine use disorder.


Author(s):  
Rianne R. Campbell ◽  
Siwei Chen ◽  
Joy H. Beardwood ◽  
Alberto J. López ◽  
Lilyana V. Pham ◽  
...  

AbstractDuring the initial stages of drug use, cocaine-induced neuroadaptations within the ventral tegmental area (VTA) are critical for drug-associated cue learning and drug reinforcement processes. These neuroadaptations occur, in part, from alterations to the transcriptome. Although cocaine-induced transcriptional mechanisms within the VTA have been examined, various regimens and paradigms have been employed to examine candidate target genes. In order to identify key genes and biological processes regulating cocaine-induced processes, we employed genome-wide RNA-sequencing to analyze transcriptional profiles within the VTA from male mice that underwent one of four commonly used paradigms: acute home cage injections of cocaine, chronic home cage injections of cocaine, cocaine-conditioning, or intravenous-self administration of cocaine. We found that cocaine alters distinct sets of VTA genes within each exposure paradigm. Using behavioral measures from cocaine self-administering mice, we also found several genes whose expression patterns corelate with cocaine intake. In addition to overall gene expression levels, we identified several predicted upstream regulators of cocaine-induced transcription shared across all paradigms. Although distinct gene sets were altered across cocaine exposure paradigms, we found, from Gene Ontology (GO) term analysis, that biological processes important for energy regulation and synaptic plasticity were affected across all cocaine paradigms. Coexpression analysis also identified gene networks that are altered by cocaine. These data indicate that cocaine alters networks enriched with glial cell markers of the VTA that are involved in gene regulation and synaptic processes. Our analyses demonstrate that transcriptional changes within the VTA depend on the route, dose and context of cocaine exposure, and highlight several biological processes affected by cocaine. Overall, these findings provide a unique resource of gene expression data for future studies examining novel cocaine gene targets that regulate drug-associated behaviors.


2019 ◽  
Author(s):  
Robin A. Sorg ◽  
Clement Gallay ◽  
Jan-Willem Veening

AbstractStreptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND and IMPLY gates. Finally, we demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.


2006 ◽  
Vol 18 (2) ◽  
pp. 142
Author(s):  
N. Ruddock ◽  
K. Wilson ◽  
M. Cooney ◽  
R. Tecirlioglu ◽  
V. Hall ◽  
...  

Developmental pathways in the mammalian embryo are profoundly influenced by the epigenetic interaction of the environment and the genome. Loss of epigenetic control has been implicated in aberrant gene expression and altered imprinting patterns with consequence to the physiology and viability of the conceptus. Bovine somatic cell nuclear transfer (SCNT) is contingent on in vitro culture, and both SCNT and culture conditions are known to induce changes in embryonic gene expression patterns. Using these experimental models, this study compared gene expression of Day 7 cloned blastocysts created from three different SCNT protocols using the same cell line, with Day 7 in vivo blastocysts to elucidate mechanisms responsible for variations in phenotypic outcomes. SCNT methods included: (1) traditional SCNT by subzonal injection (SI); (2) handmade cloning (HMC); and (3) modified serial nuclear transfer (SNT), developed within the group. Four imprinted genes (Grb10, Ndn, Nnat, and Ube3a), four chromatin remodeling genes (Cbx1, Cbx3, Smarca4, and Smarcb1) and two genes implicated in polycystic liver disease (Prkcsh and Sec63) were analyzed in single blastocysts from each treatment (n = 5). All blastocysts expressed Actin, Oct-4 and Ifn-tau. All genes were sequence verified. Several genes were expressed ubiquitously across all groups, including Ndn, Ube3a, Cbx1, Cbx3, and Smarcb1. Interestingly, Grb10 was not expressed in two HMCs and one SNT blastocyst. Nnat was weakly expressed in one in vivo blastocyst and in the majority of cloned blastocysts in all groups. Prkcsh and Sec63 were expressed in all but one HMC blastocyst. While gene expression patterns were mostly maintained following SCNT, the imprinted genes Nnat and Grb10 showed instances of differential or abnormal expression in SCNT embryos. The chromatin remodeling genes were maintained in all SCNT treatments. Prkcsh and Sec63 were both absent in one HMC blastocyst, with implications for liver dysfunction, a condition previously reported in abnormal cloned offspring. The variable mRNA expression following SCNT provides an insight into genetic and environmental factors controlling implantation, placentation, organ formation, and fetal growth.


Reproduction ◽  
2006 ◽  
Vol 131 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Hakan Sagirkaya ◽  
Muge Misirlioglu ◽  
Abdullah Kaya ◽  
Neal L First ◽  
John J Parrish ◽  
...  

Expression of embryonic genes is altered in different culture conditions, which influence developmental potential both during preimplantation and fetal development. The objective of this study was to define the effects of culture conditions on: bovine embryonic development to blastocyst stage, blastocyst cell number, apoptosis and expression patterns of a panel of developmentally important genes. Bovine embryos were culturedin vitroin three culture media containing amino acids, namely potassium simplex optimization medium (KSOMaa), Charles Rosenkrans 1 (CR1aa) and synthetic oviductal fluid (SOFaa). Apoptosis in blastocysts was determined by TUNEL assay and expression profiles of developmentally important genes were assayed by real-time PCR.In vivo-produced bovine blastocysts were used as controls for experiments determining gene expression patterns. While the cleavage rates did not differ, embryos cultured in SOFaa had higher rates of development to blastocyst stage (P< 0.05). Mean cell numbers and percentages of apoptotic cells per blastocyst did not differ among the groups. Expression of the heat shock protein 70 (Hsp70) gene was significantly up-regulated in both CR1aa and KSOMaa when compared with SOFaa (P< 0.001). DNA methyltransferase 3a (Dnmt3a) expression was higher in embryos cultured in CR1aa than in those cultured in SOFaa (P< 0.001). Expression of interferon tau (IF-τ) and insulin-like growth factor II receptor (Igf-2r) genes was significantly up-regulated in KSOMaa when compared with CR1aa (P< 0.001). Gene expression did not differ betweenin vivo-derived blastocysts and theirin vitro-derived counterparts. In conclusion, SOFaa supports higher development to blastocyst stage than KSOMaa and CR1aa, and the culture conditions influence gene expression.


Author(s):  
Dina Nitiša ◽  
Nityanand Jain ◽  
Arvīds Irmejs ◽  
Valdis Pirsko ◽  
Inese Čakstiņa

AbstractBreast cancer (BC) is the most common cause of cancer-related deaths among women in Europe and worldwide. Adherent (2D) cell cultures have been the routine in vitro model system employed in preclinical BC research for the last half-century. Over the past decade, new protocols have been developed allowing patient-derived three-dimensional organoid (3D) cell culture development from a range of solid tumours, including BC. These 3D models offer a promise of closer resemblance to the native tumour than the 2D cultures. To test the assumption that an in vitro 3D BC model system provides increased faithfulness to the molecular processes happening in vivo, as compared to 2D BC cultures, post-operational material from three BC patients was used to simultaneously develop 2D and 3D cultures in vitro. When analysed by quantitative polymerase chain reaction (PCR), the gene expression patterns of the cells from 3D cultures resembled the original tissues, while the gene expression patterns of the conventional 2D cultures were more distant.


2018 ◽  
Author(s):  
Nikita Mukhitov ◽  
Michael G. Roper

AbstractIn vivo levels of insulin are oscillatory with a period of ~5-10 minutes, implying that the numerous islets of Langerhans within the pancreas are synchronized. While the synchronizing factors are still under investigation, one result of this behavior is expected to be coordinated intracellular [Ca2+] ([Ca2+]i) oscillations throughout the islet population. The role that coordinated [Ca2+]i oscillations have on controlling gene expression within pancreatic islets was examined by comparing gene expression levels in islets that were synchronized using a low amplitude glucose wave and an unsynchronized population. The [Ca2+]i oscillations in the synchronized population were homogeneous and had a significantly lower drift in their oscillation period as compared to unsynchronized islets. This reduced drift in the synchronized population was verified by comparing the drift of in vivo and in vitro profiles from published reports. Microarray profiling indicated a number of Ca2+-dependent genes were differentially regulated between the two islet populations. Gene set enrichment analysis revealed that the synchronized population had reduced expression of gene sets related to protein translation, protein turnover, energy expenditure, and insulin synthesis, while those that were related to maintenance of cell morphology were increased. It is speculated that these gene expression patterns in the synchronized islets results in a more efficient utilization of intra-cellular resources and response to environmental changes.


2021 ◽  
Author(s):  
Linda O. Anagu ◽  
David R. Hulse ◽  
Paul D. Horrocks ◽  
Srabasti J Chakravorty

Abstract Background: In the malaria parasite Plasmodium falciparum the expression of ‘var’ virulence genes is regulated through epigenetic mechanisms. Its sirtuin epigenetic regulators have a direct effect on var gene expression patterns, are increased in a laboratory strain of P. falciparum exposed to heat shock and are positively associated with fever. A Gambia study extended this association to blood lactate and var genes commonly expressed in severe malaria, and between PfSir2A and group B var. A Kenyan study extended this association to between PfSir2A and overall var transcript level. These observations suggest a mechanism through which stress phenotypes in the human host might be sensed via a parasite sirtuin, and virulence gene expression modulated accordingly. Methods: In vitro experiments were conducted using laboratory and recently-laboratory-adapted Kenyan isolates of P. falciparum to follow up the correlative findings of the field study. To investigate a potential cause-and-effect relationship between host stress factors and parasite gene expression, qPCR was used to measure the expression of sirtuins and var genes after highly synchronous cultured parasites had been exposed to 2h or 6h of heat shock at 40°C or elevated lactate.Results: Heat shock was shown to influence the expression of PfSir2B in the trophozoites, whereas exposure to lactate was not. After the ring stages were exposed to heat shock; sirtuins, severe-disease-associated upsA and upsB var genes and var genes in general were not altered. More biological replicate experiments will be needed to confirm our observations. Conclusions: This study demonstrates that heat stress in laboratory and recently-laboratory-adapted isolates of P. falciparum results in a small increase in PfSir2B transcripts in the trophozoite stages only. By contrast, the association between hyperlactataemia and sirtuin/var gene expression that was previously observed in vivo appears to be coincidental rather than causative.


2007 ◽  
Vol 19 (1) ◽  
pp. 256
Author(s):  
W. J. Son ◽  
M. K. B. ◽  
Y. J. Jeong ◽  
S. Balasubramanian ◽  
S. Y. Choe ◽  
...  

Various factors are known to influence the survival and development of in vitro-produced embryos, including co-culture with somatic cells, antioxidants, and O2 tension. Studies in several species report that embryo development and quality were enhanced at low O2 concentrations. This study compared the effects of 2 O2 concentrations on IVP embryo development, embryo quality, and gene expression to those of in vivo counterparts. Cumulus–oocyte complexes were matured in vitro in TCM-199 with hormones and 10% FCS, and inseminated in TALP medium. Presumptive zygotes were cultured in SOF medium under either 5% or 20% O2 in air. In triplicate, sets of 5 embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula, and Day 7 blastocyst stages were used for analyzing the expression patterns of apoptotic (Bax and Bcl2), metabolism (Glut-1 and Glut-5), stress (Sox, Hsp70, and G6PDH), compaction (Cx43), oxidation (PRDX5, NADH, and MnSOD), and implantation (VEGF and IFN-tau) genes using real-time quantitative PCR. The expression of each gene was normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Statistical analysis was performed with Bonferroni and Duncan tests by ANOVA (P &lt; 0.05). Cleavage rates did not differ among groups. Blastocyst and hatched blastocyst development in 5% O2 was significantly (P &lt; 0.05) higher than in 20% O2. Total cell number of in vivo blastocysts was significantly (P &lt; 0.05) higher than that of IVP blastocysts. ICM ratio and apoptosis of in vivo blastocysts were significantly (P &lt; 0.05) lower than for IVP blastocysts. The relative abundances (RAs) of Glut-1, Glut-5, MnSOD, NADH, PRDX5, Cx43, Bcl2, and IFN-τ were significantly (P &lt; 0.05) higher in in vivo embryos, whereas the RAs of Sox, G6PDH, Hsp70, Bax, and VEGF were significantly (P &lt; 0.05) lower than for IVP counterparts. In conclusion, culture at 5% O2 concentration resulted in higher rates of development to the blastocyst stage, higher total cell numbers, and decreased apoptosis. Furthermore, differences in expression of genes including Glut-1, Glut-5, Sox, G6PDH, Hsp70, Bax, Bcl2, Cx43, PRDX5, NADH, MnSOD, VEGF, and IFN-τ may prove useful in determining optimal culture conditions. This work was supported by ARPC (204119-03-SB010), Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document