scholarly journals Probe the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility

2021 ◽  
Author(s):  
Zhongwen Chen ◽  
Dongmyung Oh ◽  
Kabir H. Biswas ◽  
Ronen Zaidel-Bar ◽  
Jay T. Groves

AbstractClustering of ligand:receptor complexes on the cell membrane is widely presumed to have functional consequences for subsequent signal transduction. However, it is experimentally challenging to selectively manipulate receptor clustering without altering other biochemical aspects of the cellular system. Here, we develop a microfabrication strategy to produce substrates displaying mobile and immobile ligands that are separated by roughly one micron and thus experience an identical cytoplasmic signaling state, enabling precision comparison of downstream signaling reactions. Applying this approach to characterize the ephrinA1:EphA2 signaling system reveals that EphA2 clustering enhances receptor phosphorylation. Single molecule imaging clearly resolves increased molecular binding dwell time at EphA2 clusters for both Grb2:SOS and NCK:NWASP signaling modules. This type of intracellular comparison enables a substantially higher degree of quantitative analysis than is possible when comparisons must be made between different cells and essentially eliminates the effects of cellular response to ligand manipulation.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Zhongwen Chen ◽  
Dongmyung Oh ◽  
Kabir Hassan Biswas ◽  
Ronen Zaidel-Bar ◽  
Jay T Groves

Clustering of ligand:receptor complexes on the cell membrane is widely presumed to have functional consequences for subsequent signal transduction. However, it is experimentally challenging to selectively manipulate receptor clustering without altering other biochemical aspects of the cellular system. Here, we develop a microfabrication strategy to produce substrates displaying mobile and immobile ligands that are separated by roughly 1 µm, and thus experience an identical cytoplasmic signaling state, enabling precision comparison of downstream signaling reactions. Applying this approach to characterize the ephrinA1:EphA2 signaling system reveals that EphA2 clustering enhances both receptor phosphorylation and downstream signaling activity. Single-molecule imaging clearly resolves increased molecular binding dwell times at EphA2 clusters for both Grb2:SOS and NCK:N-WASP signaling modules. This type of intracellular comparison enables a substantially higher degree of quantitative analysis than is possible when comparisons must be made between different cells and essentially eliminates the effects of cellular response to ligand manipulation.


2019 ◽  
Vol 12 (564) ◽  
pp. eaat8715 ◽  
Author(s):  
Jenny J. Y. Lin ◽  
Shalini T. Low-Nam ◽  
Katherine N. Alfieri ◽  
Darren B. McAffee ◽  
Nicole C. Fay ◽  
...  

T cell receptor (TCR) binding to agonist peptide major histocompatibility complex (pMHC) triggers signaling events that initiate T cell responses. This system is remarkably sensitive, requiring only a few binding events to successfully activate a cellular response. On average, activating pMHC ligands exhibit mean dwell times of at least a few seconds when bound to the TCR. However, a T cell accumulates pMHC-TCR interactions as a stochastic series of discrete, single-molecule binding events whose individual dwell times are broadly distributed. With activation occurring in response to only a handful of such binding events, individual cells are unlikely to experience the average binding time. Here, we mapped the ensemble of pMHC-TCR binding events in space and time while simultaneously monitoring cellular activation. Our findings revealed that T cell activation hinges on rare, long–dwell time binding events that are an order of magnitude longer than the average agonist pMHC-TCR dwell time. Furthermore, we observed that short pMHC-TCR binding events that were spatially correlated and temporally sequential led to cellular activation. These observations indicate that T cell antigen discrimination likely occurs by sensing the tail end of the pMHC-TCR binding dwell time distribution rather than its average properties.


2016 ◽  
Vol 113 (29) ◽  
pp. 8218-8223 ◽  
Author(s):  
William Y. C. Huang ◽  
Qingrong Yan ◽  
Wan-Chen Lin ◽  
Jean K. Chung ◽  
Scott D. Hansen ◽  
...  

The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.


2021 ◽  
Author(s):  
Darren B. McAffee ◽  
Mark K. O'Dair ◽  
Jenny J. Lin ◽  
Shalini T. Low-Nam ◽  
Kiera B. Wilhelm ◽  
...  

LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event. Only the probability of the LAT condensate forming is related to the pMHC:TCR binding dwell time. LAT condenses abruptly, but after an extended delay from the originating binding event. A LAT mutation that facilitates phosphorylation at the PLC-γ1 recruitment site shortens the delay time to LAT condensation and alters T cell antigen specificity. These results identify a role for the LAT protein condensation phase transition in setting antigen discrimination thresholds in T cells.


2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


2014 ◽  
Vol 106 (2) ◽  
pp. 719a
Author(s):  
Song Song ◽  
Haijiao Wang ◽  
Xue-Lu Wang ◽  
Yan-Wen Tan

Author(s):  
Janet M. Oliver ◽  
JeanClare Seagrave ◽  
Robert F. Stump ◽  
Janet R. Pfeiffer ◽  
Grace G. Deanin

2021 ◽  
Author(s):  
◽  
Matthew Rowe

<p>Over the past decade and a half, evidence for transfer of whole mitochondria between mammalian cells has emerged in the literature. The notion that mitochondria are restricted to the cell of origin has been overturned by this curious phenomenon, yet the physiological relevance of these transfer events remains unclear.   This thesis investigates intercellular mitochondrial transfer in co-cultures of neural cells in vitro, to understand whether neural cells placed under stress demonstrate an enhanced rate of intercellular mitochondrial transfer. This would implicate the phenomenon as a cellular response to stress.   Reliable techniques for quantitative study of intercellular mitochondrial transfer are limited so far in this field. To address this, a novel quantitative approach was developed to detect intercellular mitochondrial transfer, based on single molecule genotyping by target-primed rolling circle amplification. This enabled imaging of individual mitochondrial DNA molecules in situ, to detect those molecules which had moved between cells. Through this strategy, intercellular mitochondrial transfer was detected in new in vitro co-culture models.   Primary murine pericytes derived from brain microvessels, were found to readily transfer mitochondria to a murine astrocyte cell line in vitro. Cisplatin, a DNA damaging agent; and chloramphenicol, a mitochondrial ribosome inhibitor, used to induce acute cellular injuries in the murine astrocyte cell line. These injuries were characterised and found to induce apoptosis, cause changes in growth characteristics, mitochondrial gene expression, and alter the metabolic phenotype of the cells. A derivative of the astrocyte cell line which completely lacks mitochondrial respiration, was found to model a chronic metabolic injury.  As pericytes are prevalent throughout the brain, the pericyte/astrocyte co-culture model was selected to evaluate how the rate of intercellular mitochondrial transfer was altered, when the astrocytes were injured prior to co-culture. Through in situ single molecule genotyping and high throughput confocal microscopy, quantitative data was produced on how the rate of intercellular mitochondrial transfer was altered by injury in these models. The rate of intercellular mitochondrial transfer remained unaltered by chloramphenicol, however both cisplatin and the chronic metabolic injury model demonstrated reduced numbers of pericyte mitochondrial DNAs transferred into the injured astrocytes.   These studies demonstrate successful application of a novel approach to study intercellular mitochondrial transfer and enable quantitative studies of this phenomenon.</p>


2001 ◽  
Vol 41 (supplement) ◽  
pp. S29
Author(s):  
M. Morimatsu ◽  
K. Ota ◽  
K. Hibino ◽  
T. Miyauchi ◽  
T. Uyemura ◽  
...  

1999 ◽  
Vol 344 (2) ◽  
pp. 503-509 ◽  
Author(s):  
Annabelle DÉJARDIN ◽  
Lubomir N. SOKOLOV ◽  
Leszek A. KLECZKOWSKI

Sucrose synthase (Sus) is a key enzyme of sucrose metabolism. Two Sus-encoding genes (Sus1 and Sus2) from Arabidopsis thaliana were found to be profoundly and differentially regulated in leaves exposed to environmental stresses (cold stress, drought or O2 deficiency). Transcript levels of Sus1 increased on exposure to cold and drought, whereas Sus2 mRNA was induced specifically by O2 deficiency. Both cold and drought exposures induced the accumulation of soluble sugars and caused a decrease in leaf osmotic potential, whereas O2 deficiency was characterized by a nearly complete depletion in sugars. Feeding abscisic acid (ABA) to detached leaves or subjecting Arabidopsis ABA-deficient mutants to cold stress conditions had no effect on the expression profiles of Sus1 or Sus2, whereas feeding metabolizable sugars (sucrose or glucose) or non-metabolizable osmotica [poly(ethylene glycol), sorbitol or mannitol] mimicked the effects of osmotic stress on Sus1 expression in detached leaves. By using various sucrose/mannitol solutions, we demonstrated that Sus1 was up-regulated by a decrease in leaf osmotic potential rather than an increase in sucrose concentration itself. We suggest that Sus1 expression is regulated via an ABA-independent signal transduction pathway that is related to the perception of a decrease in leaf osmotic potential during stresses. In contrast, the expression of Sus2 was independent of sugar/osmoticum effects, suggesting the involvement of a signal transduction mechanism distinct from that regulating Sus1 expression. The differential stress-responsive regulation of Sus genes in leaves might represent part of a general cellular response to the allocation of carbohydrates during acclimation processes.


Sign in / Sign up

Export Citation Format

Share Document