scholarly journals The mitochondrial pyruvate carrier (MPC) complex is one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism

2021 ◽  
Author(s):  
Xuyen H. Le ◽  
Chun-Pong Lee ◽  
A. Harvey Millar

AbstractMalate oxidation by plant mitochondria enables the generation of both oxaloacetate (OAA) and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis were largely maintained except for alanine and glutamate, indicating that transamination contributes to restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases (AlaAT) when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.

2020 ◽  
Vol 13 (10) ◽  
pp. dmm047134
Author(s):  
Leonie Drews ◽  
Marcel Zimmermann ◽  
Philipp Westhoff ◽  
Dominik Brilhaus ◽  
Rebecca E. Poss ◽  
...  

ABSTRACTAstrocyte dysfunction is a primary factor in hepatic encephalopathy (HE) impairing neuronal activity under hyperammonemia. In particular, the early events causing ammonia-induced toxicity to astrocytes are not well understood. Using established cellular HE models, we show that mitochondria rapidly undergo fragmentation in a reversible manner upon hyperammonemia. Further, in our analyses, within a timescale of minutes, mitochondrial respiration and glycolysis were hampered, which occurred in a pH-independent manner. Using metabolomics, an accumulation of glucose and numerous amino acids, including branched chain amino acids, was observed. Metabolomic tracking of 15N-labeled ammonia showed rapid incorporation of 15N into glutamate and glutamate-derived amino acids. Downregulating human GLUD2 [encoding mitochondrial glutamate dehydrogenase 2 (GDH2)], inhibiting GDH2 activity by SIRT4 overexpression, and supplementing cells with glutamate or glutamine alleviated ammonia-induced inhibition of mitochondrial respiration. Metabolomic tracking of 13C-glutamine showed that hyperammonemia can inhibit anaplerosis of tricarboxylic acid (TCA) cycle intermediates. Contrary to its classical anaplerotic role, we show that, under hyperammonemia, GDH2 catalyzes the removal of ammonia by reductive amination of α-ketoglutarate, which efficiently and rapidly inhibits the TCA cycle. Overall, we propose a critical GDH2-dependent mechanism in HE models that helps to remove ammonia, but also impairs energy metabolism in mitochondria rapidly.


2020 ◽  
Vol 133 (22) ◽  
pp. jcs247957
Author(s):  
Jeong-Hun Ko ◽  
Antoni Olona ◽  
Adonia E. Papathanassiu ◽  
Norzawani Buang ◽  
Kwon-Sik Park ◽  
...  

ABSTRACTIn response to environmental stimuli, macrophages change their nutrient consumption and undergo an early metabolic adaptation that progressively shapes their polarization state. During the transient, early phase of pro-inflammatory macrophage activation, an increase in tricarboxylic acid (TCA) cycle activity has been reported, but the relative contribution of branched-chain amino acid (BCAA) leucine remains to be determined. Here, we show that glucose but not glutamine is a major contributor of the increase in TCA cycle metabolites during early macrophage activation in humans. We then show that, although uptake of BCAAs is not altered, their transamination by BCAT1 is increased following 8 h lipopolysaccharide (LPS) stimulation. Of note, leucine is not metabolized to integrate into the TCA cycle in basal or stimulated human macrophages. Surprisingly, the pharmacological inhibition of BCAT1 reduced glucose-derived itaconate, α-ketoglutarate and 2-hydroxyglutarate levels without affecting succinate and citrate levels, indicating a partial inhibition of the TCA cycle. This indirect effect is associated with NRF2 (also known as NFE2L2) activation and anti-oxidant responses. These results suggest a moonlighting role of BCAT1 through redox-mediated control of mitochondrial function during early macrophage activation.


Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2327-2334 ◽  
Author(s):  
Takashi Miyazaki ◽  
Junichi Miyazaki ◽  
Hisakazu Yamane ◽  
Makoto Nishiyama

The extremely thermophilic bacterium Thermus thermophilus HB27 synthesizes lysine through α-aminoadipate (AAA). In this study, a T. thermophilus gene encoding the enzyme that catalyses transamination of AAA was cloned as a mammalian kynurenine/AAA aminotransferase (Kat2) gene homologue. A T. thermophilus mutant with disruption of the Kat2 homologue required a longer lag phase for growth and showed slower growth in minimal medium. Furthermore, addition of AAA or lysine shortened the lag phase and improved the growth rate. The Kat2 homologue was therefore termed lysN. LysN recognizes not only 2-oxoadipate, an intermediate of lysine biosynthesis, but also 2-oxoisocaproate, 2-oxoisovalerate and 2-oxo-3-methylvalerate, intermediates of leucine, valine and isoleucine biosyntheses, respectively, along with oxaloacetate, a compound in the TCA cycle, as an amino acceptor. These results suggest multiple roles of LysN in several cellular metabolic pathways including lysine and branched-chain amino acid biosyntheses.


2016 ◽  
Vol 311 (2) ◽  
pp. E471-E479 ◽  
Author(s):  
Yi Wang ◽  
Gary G. Deng ◽  
Kelvin P. Davies

There are at present no published studies providing a global overview of changes in bladder metabolism resulting from diabetes. Such studies have the potential to provide mechanistic insight into the development of diabetic bladder disorder (DBD). In the present study, we compared the metabolome of detrusor and urothelial layer in a 1-mo streptozotocin-induced rat model of type 1 diabetes with nondiabetic controls. Our studies revealed that diabetes caused both common and differential changes in the detrusor and urothelial layer's metabolome. Diabetes resulted in similar changes in the levels of previously described diabetic markers in both tissues, such as glucose, lactate, 2-hydroxybutyrate, branched-chain amino acid degradation products, bile acids, and 1,5-anhydroglucitol, as well as markers of oxidative stress. In the detrusor (but not the urothelial layer), diabetes caused activation of the pentose-phosphate and polyol pathways, concomitant with a reduction in the TCA cycle and β-oxidation. Changes in detrusor energy-generating pathways resulted in an accumulation of sorbitol that, through generation of advanced glycation end products, is likely to play a central role in the development of DBD. In the diabetic urothelial layer there was decreased flux of glucose via glycolysis and changes in lipid metabolism, particularly prostaglandin synthesis, which also potentially contributes to detrusor dysfunction.


2021 ◽  
Author(s):  
Imadeddin Hijazi ◽  
Emily Wang ◽  
Michelle Orozco ◽  
Sarah Pelton ◽  
Amy Chang

Endoplasmic reticulum stress (ERS) occurs when cellular demand for protein folding exceeds the capacity of the organelle. Adaptation and cell survival in response to ERS requires a critical contribution by mitochondria and peroxisomes. During ERS response, mitochondrial respiration increases to ameliorate reactive oxygen species (ROS) accumulation; we now show in yeast that peroxisome abundance also increases to promote an adaptive response. In pox1▵ cells, defective in peroxisomal ß oxidation of fatty acids, respiratory response to ERS is impaired, and ROS accrues. However, respiratory response to ERS is rescued, and ROS production is mitigated in pox1▵ cells by overexpression of Mpc1, the mitochondrial pyruvate carrier that provides another source of acetyl CoA to fuel the TCA cycle and oxidative phosphorylation. Using proteomics, select mitochondrial proteins were identified that undergo upregulation by ERS to remodel respiratory machinery. Several peroxisome-based proteins were also increased, corroborating the peroxisomal role in ERS adaptation. Finally, ERS stimulates assembly of respiratory complexes into higher order supercomplexes, underlying increased electron transfer efficiency. Our results highlight peroxisomal and mitochondrial support for ERS adaptation to favor cell survival.


2020 ◽  
Author(s):  
Lia Heinemann-Yerushalmi ◽  
Lital Bentovim ◽  
Neta Felsenthal ◽  
Ron Carmel Vinestock ◽  
Nofar Michaeli ◽  
...  

AbstractPyruvate dehydrogenase kinases (PDK1-4) inhibit the TCA cycle by phosphorylating pyruvate dehydrogenase complex (PDC). Here, we show that the PDK family is dispensable for the survival of murine embryonic development and that BCKDK serves as a compensatory mechanism by inactivating PDC.First, we knocked out all fourPdkgenes one by one. Surprisingly,Pdktotal KO embryos developed and were born in expected ratios, but died by postnatal day 4 due to hypoglycemia or ketoacidosis.Finding that PDC was phosphorylated in these embryos suggested that another kinase compensates for the PDK family. Bioinformatic analysis implicated brunch chain ketoacid dehydrogenase kinase (Bckdk), a key regulator of branched chain amino acids (BCAA) catabolism. Indeed, knockout ofBckdkand thePdkfamily led to loss of PDC phosphorylation, increment in PDC activity, elevation of Pyruvate flux into the TCA and early embryonic lethality. These findings reveal a new regulatory crosstalk hardwiring BCAA and glucose catabolic pathways, which feed the TCA cycle.


2015 ◽  
Vol 112 (11) ◽  
pp. E1392-E1400 ◽  
Author(s):  
Danilo M. Daloso ◽  
Karolin Müller ◽  
Toshihiro Obata ◽  
Alexandra Florian ◽  
Takayuki Tohge ◽  
...  

Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: “What regulates flux through this pathway in vivo?” Previous proteomic experiments withArabidopsisdiscussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway inArabidopsis: theNADP-TRX reductasea and b double mutant (ntra ntrb) and the mitochondrially locatedthioredoxin o1(trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when13C-glucose,13C-malate, or13C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.


2021 ◽  
Author(s):  
Linyu Ran ◽  
Song Zhang ◽  
Pei Zhao ◽  
Jiaqi Zhou ◽  
Haiyun Gan ◽  
...  

Abstract Glycolysis is essential for the classical activation of macrophages (M1), but how glycolytic pathway metabolites engage in this process remains to be elucidated. Glycolysis culminates in the production of pyruvate, which can be transported into the mitochondria by the mitochondrial pyruvate carrier (MPC) followed by conversion to citrate and utilization in the TCA cycle. Alternatively, pyruvate can be metabolized to lactate under aerobic conditions, which had been considered to be the dominant route in the setting of classical macrophage activation. However, based on studies that used UK5099 as a MPC inhibitor and showed reduction in key inflammatory cytokines, the mitochondrial route has been considered to be of significance for M1 activation as well. Herein, using a genetic depletion model, we found that MPC is dispensable for metabolic reprogramming and the activation of M1. While UK5099 reaches maximal MPC inhibitory capacity at approximately 2–5µM, higher concentrations are required to inhibit inflammatory cytokine production in M1 and this is independent of MPC expression. Apart from MPC inhibition, UK5099 at high doses impairs glutamate oxidation, mitochondrial membrane potential and HIF-1α stabilization. Taken together, UK5099 inhibits inflammatory responses in M1 macrophages due to effects other than MPC inhibition.


1982 ◽  
Vol 208 (3) ◽  
pp. 703-711 ◽  
Author(s):  
J M Palmer ◽  
J P Schwitzguébel ◽  
I M Møller

Exogenous NAD+ stimulated the rotenone-resistant oxidation of all the NAD+-linked tricarboxylic acid-cycle substrates in mitochondria from Jerusalem artichoke (Helianthus tuberosus L.) tubers. The stimulation was not removed by the addition of EGTA, which is known to inhibit the oxidation of exogenous NADH. It is therefore concluded that added NAD+ gains access to the matrix space and stimulates oxidation by the rotenone-resistant NADH dehydrogenase located on the matrix surface of the inner membrane. Added NAD+ stimulated the activity of malic enzyme and displaced the equilibrium of malate dehydrogenase; both observations are consistent with entry of NAD+ into the matrix space. Analysis of products of malate oxidation showed that rotenone-resistant oxygen uptake only occurred when the concentration of oxaloacetate was low and that of NADH was high. Thus it is proposed that the concentration of NADH regulates the activity of the two internal NADH dehydrogenases. Evidence is presented to suggest that the rotenone-resistant NADH dehydrogenase is engaged under conditions of high phosphorylation potential, which restricts electron flux through the rotenone-sensitive dehydrogenase (coupled to ATP synthesis).


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
John S. Hothersall ◽  
Aamir Ahmed

Catabolite repression (CCR) regulates amino acid permeases in Saccharomyces cerevisiae via a TOR-kinase mediated mechanism. When glucose, the preferred fuel in S. cerevisiae, is substituted by galactose, amino acid uptake is increased. Here we have assessed the contribution and metabolic significance of this surfeit of amino acid in yeast undergoing catabolite derepression (CDR). L-[U-14C]leucine oxidation was increased 15 ± 1 fold in wild type (WT) strain grown in galactose compared to glucose. Under CDR, leucine oxidation was (i) proportional to uptake, as demonstrated by decreased uptake and oxidation of leucine in strains deleted of major leucine permeases and (ii) entirely dependent upon the TCA cycle, as cytochrome c1 (Cyt1) deleted strains could not grow in galactose. A regulator of amino acid carbon entry into the TCA cycle, branched chain ketoacid dehydrogenase, was also increased 29 ± 3 fold under CCR in WT strain. Protein expression of key TCA cycle enzymes, citrate synthase (Cs), and Cyt1 was increased during CDR. In summary, CDR upregulation of amino acid uptake is accompanied by increased utilization of amino acids for yeast growth. The mechanism for this is likely to be an increase in protein expression of key regulators of the TCA cycle.


Sign in / Sign up

Export Citation Format

Share Document