scholarly journals A functional logic for neurotransmitter co-release in the cholinergic forebrain pathway

2021 ◽  
Author(s):  
Aditya Nair ◽  
Martin Graf ◽  
Yue Yang Teo ◽  
George J. Augustine

AbstractThe forebrain cholinergic system has recently been shown to co-release both acetylcholine and GABA. We have discovered that such co-release by cholinergic inputs to the claustrum differentially affects neurons that project to cortical versus subcortical targets. The resulting changes in neuronal gain toggles network efficiency and discriminability of output between two different projection subcircuits. Our results provide a potential logic for neurotransmitter co-release in cholinergic systems.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ismail O. Ishola ◽  
Taiwo G. Olubodun-Obadun ◽  
Mariam A. Ojulari ◽  
Olufunmilayo O. Adeyemi

AbstractObjectivesThe brain’s cholinergic system occupies a central role in normal cognition and age-related cognitive decline, including Alzheimer’s disease (AD). This study sought to investigate the role of antioxidant defense and cholinergic systems on rutin-induced antiamnesia in mice.MethodsRutin (1, 5, or 50 mg/kg, p.o.) or vehicle (10 ml/kg, p.o.) was administered for three consecutive days. One hour post-treatment on day 3, scopolamine (3 mg/kg, i.p) was given, 5 min post-scopolamine injection, open field, Y-maze, or Morris water maze (MWM) (five days consecutive training sessions) tasks was carried out. The mice were sacrificed on day 7 to assays for biomarkers of oxidative stress and cholinergic system.ResultsScopolamine significantly reduced spontaneous alternation behavior in Y-maze and prolonged escape latency in MWM tasks when compared to vehicle-treated control indicative of working memory and spatial learning deficits. However, the pretreatment of mice with rutin (1, 5, or 50 mg/kg) prevented scopolamine-induced working memory and spatial learning impairments without affecting spontaneous locomotor activity. Scopolamine-induced nitrosative/oxidative stress and increased acetylcholinesterase activity in the prefrontal cortex and hippocampus were significantly attenuated by the pretreatment of mice with rutin.Conclusionsrutin restored cognitive function in scopolamine-induced amnesia through enhancement of antioxidant defense and cholinergic systems.


2019 ◽  
Author(s):  
Ajeesh Koshy Cherian ◽  
Natalie C. Tronson ◽  
Vinay Parikh ◽  
Aaron Kucinski ◽  
Randy D. Blakely ◽  
...  

AbstractPrevious research emphasized the impact of traumatic brain injury on cholinergic systems and associated cognitive functions. Here we addressed the converse question: Because of the available evidence indicating cognitive and neuronal vulnerabilities in humans expressing low-capacity cholinergic systems or with declining cholinergic systems, do injuries cause more severe cognitive decline in such subjects, and what cholinergic mechanisms contribute to such a vulnerability? Using mice heterozygous for the choline transporter (CHT+/- mice) as a model for a limited cholinergic capacity, we investigated the cognitive and neuronal consequences of repeated, mild concussion injuries (rmCc). Following five rmCc, and compared with WT mice, CHT+/- mice exhibited severe and lasting impairments in sustained attention performance, consistent with effects of cholinergic losses on attention. However, rmCc did not affect the integrity of neuronal cell bodies and did not alter the density of cortical synapses. As a cellular mechanism potentially responsible for the attentional impairment in CHT+/- mice, we found that rmCc nearly completely attenuated performance-associated, CHT-mediated choline transport. These results predict that subjects with an already vulnerable cholinergic system will experience severe and lasting cognitive-cholinergic effects following even relatively mild injuries. If confirmed in humans, such subjects may be excluded from, or receive special protection against, activities involving injury risk. Moreover, the treatment and long-term outcome of traumatic brain injuries may benefit from determining the status of cholinergic systems and associated cognitive functions.


Author(s):  
Arianna Casini ◽  
Rosa Vaccaro ◽  
Mattia Toni ◽  
Carla Cioni

Cholinergic systems play a role in basic cerebral functions and its dysfunction is associated with deficit in neurodegenerative disease. Mechanisms involved in human brain diseases, are often approached by using fish models, especially cyprinids, given basic similarities of the fish brain to that of mammals. In the present paper, the organization of central cholinergic systems have been described in the cyprinid Cyprinus carpio, the common carp, by using specific polyclonal antibodies against ChAT, the synthetic enzyme of acetylcholine, that is currently used as a specific marker for cholinergic neurons in all vertebrates.  In this work, serial transverse sections of the brain and the spinal cord were immunostained for ChAT. Results showed that positive neurons are present in several nuclei of the forebrain, the midbrain, the hindbrain and the spinal cord. Moreover, ChAT-positive neurons were detected in the synencephalon and in the cerebellum. In addition to neuronal bodies, afferent varicose fibers were stained for ChAT in the ventral telencephalon, the preoptic area, the hypothalamus and the posterior tuberculum. No neuronal cell bodies were present in the telencephalon. The comparison of cholinergic distribution pattern in the Cyprinus carpio central nervous system has revealed similarities but also some interesting differences with other cyprinids. Our results provide additional information on the cholinergic system from a phylogenetic point of view and may add new perspectives to physiological roles of cholinergic system during evolution and the neuroanatomical basis of neurological diseases.


1988 ◽  
Vol 27 (4II) ◽  
pp. 501-507 ◽  
Author(s):  
Soofia Mumtaz

This paper discusses some issues currently preoccupying social scientists with respect to the process of development and its implications for Third World countries. These issues have become highly significant considering the momentum and nature of the development process being launched in the so-called "underdeveloped" world, within the context of modern nation-states. Therefore, in this paper, we seek to identify: (a) What is meant by development; (b) How the encounter between this process and traditional social structures (with their own functional logic, based on earlier forms of production and social existence) takes place; (c) What the implications of this encounter are; and (d) What lessons we can learn in this regard from history and anthropology. Development as a planned and organized process, the prime issue concerning both local and Western experts in Third World countries, is a recent phenomenon in comparison to the exposure of Third World countries to the Western Industrial system. The former gained momentum subsequent to the decolonization of the bulk of the Third World in the last half of this century, whereas the latter dates to at least the beginning of this century, if not earlier, when the repercussions of colonization, and later the two World Wars, became manifest in these countries.


Author(s):  
Yu Huang ◽  
Wu-Tung Cheng ◽  
Ting-Pu Tai ◽  
Liyang Lai ◽  
Ruifeng Guo ◽  
...  

Abstract If a signal on clock tree is slower than expected due to either a design error or a manufacturing defect, it may cause complicated fault behaviors during scan-based testing. It makes the diagnosis of such defect especially difficult if the defective clock signal is used for both shift and capture operations during the scan testing, because (1) the defect induces hold time faults on scan chains during shift cycles, and (2) hold-time faults may also be introduced during capture cycles in the functional logic paths. In this paper we illustrate the failure behaviors of such clock defects and propose an algorithm to diagnose it.


2018 ◽  
Vol 17 (6) ◽  
pp. 404-411 ◽  
Author(s):  
Syeda Mehpara Farhat ◽  
Touqeer Ahmed

Background: Aluminum (Al) causes neurodegeneration and its toxic effects on cholinergic system in the brain is well documented. However, it is unknown whether and how Al changes oscillation patterns, driven by the cholinergic system, in the hippocampus. Objective: We studied acute effects of Al on nicotinic acetylcholine receptors (nAChRs)-mediated modulation of persistent gamma oscillations in the hippocampus. Method: The field potential recording was done in CA3 area of acute hippocampal slices. Results: Carbachol-induced gamma oscillation peak power increased (1.32±0.09mV2/Hz, P<0.01) in control conditions (without Al) by application of 10µM nicotine as compared to baseline value normalized to 1. This nicotine-induced facilitation of gamma oscillation peak power was found to depend on non-α7 nAChRs. In slices with Al pre-incubation for three to four hours, gamma oscillation peak power was reduced (5.4±1.8mV2/Hz, P<0.05) and facilitatory effect of nicotine on gamma oscillation peak power was blocked as compared to the control (18.06±2.1mV2/Hz) or one hour Al pre-incubated slices (11.3±2.5mV2/Hz). Intriguingly wash-out, after three to four hours of Al incubation, failed to restore baseline oscillation power and its facilitation by nicotine as no difference was observed in gamma oscillation peak power between Al wash-out slices (3.4±1.1mV2/Hz) and slices without washout (3.6±0.9mV2/Hz). Conclusion: This study shows that at cellular level, exposure of hippocampal tissue to Al compromised nAChR-mediated facilitation of cholinergic hippocampal gamma oscillations. Longer in vitro Al exposure caused permanent changes in hippocampal oscillogenic circuitry and changed its sensitivity to nAChR-modulation. This study will help to understand the possible mechanism of cognitive decline induced by Al.


Author(s):  
Chunyu Liu ◽  
Fengrui Mu ◽  
Weilong Zhang

Background: In recent era of technology, the traditional Ant Colony Algorithm (ACO) is insufficient in solving the problem of network congestion and load balance, and network utilization. Methods: This paper proposes an improved ant colony algorithm, which considers the price factor based on the theory of elasticity of demand. The price factor is denominated in the impact on the network load which means indirect control of network load, congestion or auxiliary solution to calculate the idle resources caused by the low network utilization and reduced profits. Results: Experimental results show that the improved algorithm can balance the overall network load, extend the life of path by nearly 3 hours, greatly reduce the risk of network paralysis, and increase the profit of the manufacturer by 300 million Yuan. Conclusion: Furthermore, results shows that the improved method has a great application value in improving the network efficiency, balancing network load, prolonging network life and increasing network operating profit.


Sign in / Sign up

Export Citation Format

Share Document