scholarly journals Disinfection of SARS-CoV-2 contaminated surfaces of personal items with UVC-LED disinfection boxes

2021 ◽  
Author(s):  
Maren Bormann ◽  
Mira Alt ◽  
Leonie Schipper ◽  
Lukas van de Sand ◽  
Mona Otte ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted from person-to-person by close contact, small aerosol respiratory droplets and potentially via contact with contaminated surfaces. Here, we investigated the effectiveness of commercial UVC-LED disinfection boxes in inactivating SARS-CoV-2 contaminated surfaces of personal items. We contaminated glass, metal and plastic samples representing the surfaces of personal items such as smartphones, coins or credit cards with SARS-CoV-2 formulated in an organic matrix mimicking human respiratory secretions. For disinfection, the samples were placed at different distances from UVC emitting LEDs inside commercial UVC-LED disinfection boxes and irradiated for different time periods (up to 10 minutes). High viral loads of SARS-CoV-2 were effectively inactivated on all surfaces after 3 minutes of irradiation. Even 10 seconds of UVC-exposure strongly reduced viral loads. Thus, UVC-LED boxes proved to be an effective method for disinfecting SARS-CoV-2 contaminated surfaces that are typically found on personal items.

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Maren Bormann ◽  
Mira Alt ◽  
Leonie Schipper ◽  
Lukas van de Sand ◽  
Mona Otte ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted from person to person by close contact, small aerosol respiratory droplets, and potentially via contact with contaminated surfaces. Herein, we investigated the effectiveness of commercial UVC-LED disinfection boxes in inactivating SARS-CoV-2-contaminated surfaces of personal items. We contaminated glass, metal, and plastic samples representing the surfaces of personal items such as smartphones, coins, or credit cards with SARS-CoV-2 formulated in an organic matrix mimicking human respiratory secretions. For disinfection, the samples were placed at different distances from UVC emitting LEDs inside commercial UVC-LED disinfection boxes and irradiated for different time periods (up to 10 min). High viral loads of SARS-CoV-2 were effectively inactivated on all surfaces after 3 min of irradiation. Even 10 s of UVC-exposure strongly reduced viral loads. Thus, UVC-LED boxes proved to be an effective method for disinfecting SARS-CoV-2-contaminated surfaces that are typically found on personal items.


2020 ◽  
Author(s):  
Sean Horoho ◽  
Stephen Musik ◽  
David Bryant ◽  
William Brooks ◽  
Ian M Porter

ABSTRACT It is well established that coronavirus disease 2019 is primarily transmitted through respiratory droplets, and there is mounting research speculation that it may also be transmitted via fomites. Several studies have shown that the virus can persist on both porous and nonporous surfaces for hours to days, depending upon the material. This article examines three cases of polymerase chain reaction–proven severe acute respiratory syndrome coronavirus 2 infection with several additional individuals meeting CDC close contact criteria. In 1 case, 195 downstream contacts were all tested to prevent a mass outbreak in a deployment posture. Analysis of these contacts yielded only a single positive test, which could be reasonably ascribed to respiratory droplet transmission. While these cases and their contacts ultimately represent a small sample size, we suggest fomite spread may not be a significant means of transmission for severe acute respiratory syndrome coronavirus 2 in real-world operational scenarios.


Author(s):  
Jianzhong Shi ◽  
Zhiyuan Wen ◽  
Gongxun Zhong ◽  
Huanliang Yang ◽  
Chong Wang ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the infectious disease COVID-19, which was first reported in Wuhan, China in December, 2019. Despite the tremendous efforts to control the disease, COVID-19 has now spread to over 100 countries and caused a global pandemic. SARS-CoV-2 is thought to have originated in bats; however, the intermediate animal sources of the virus are completely unknown. Here, we investigated the susceptibility of ferrets and animals in close contact with humans to SARS-CoV-2. We found that SARS-CoV-2 replicates poorly in dogs, pigs, chickens, and ducks, but efficiently in ferrets and cats. We found that the virus transmits in cats via respiratory droplets. Our study provides important insights into the animal reservoirs of SARS-CoV-2 and animal management for COVID-19 control.


2020 ◽  
Vol 222 (4) ◽  
pp. 551-555 ◽  
Author(s):  
Linlin Bao ◽  
Hong Gao ◽  
Wei Deng ◽  
Qi Lv ◽  
Haisheng Yu ◽  
...  

Abstract We simulated 3 transmission modes, including close-contact, respiratory droplets and aerosol routes, in the laboratory. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be highly transmitted among naive human angiotensin-converting enzyme 2 (hACE2) mice via close contact because 7 of 13 naive hACE2 mice were SARS-CoV-2 antibody seropositive 14 days after being introduced into the same cage with 3 infected-hACE2 mice. For respiratory droplets, SARS-CoV-2 antibodies from 3 of 10 naive hACE2 mice showed seropositivity 14 days after introduction into the same cage with 3 infected-hACE2 mice, separated by grids. In addition, hACE2 mice cannot be experimentally infected via aerosol inoculation until continued up to 25 minutes with high viral concentrations.


Author(s):  
Robson de Lima GOMES ◽  
Marlus da Silva PEDROSA ◽  
Claudio Heliomar Vicente da SILVA

ABSTRACT Since the outbreak of the Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), numerous restrictive measures have been adopted by governments of different countries. The return to elective dental care in Brazil is a reality even during the COVID-19 pandemic. During restorative dental procedures, the dental professional requires close contact with the patient, being exposed to contaminated saliva and fluids. In addition, transmission of COVID-19 by the generation of aerosol produced by dental handipieces may be possible. Thus, the dental staff must know how to act during restorative dental procedures, putting into practice the correct clinical protocols to avoid cross-contamination and COVID-19 spread. The purpose of this article is to review the literature on the biosafety practices especially in the context of restorative dental procedures in times of COVID-19.


Science ◽  
2021 ◽  
Vol 372 (6539) ◽  
pp. eabg0821 ◽  
Author(s):  
Katrina A. Lythgoe ◽  
Matthew Hall ◽  
Luca Ferretti ◽  
Mariateresa de Cesare ◽  
George MacIntyre-Cockett ◽  
...  

Extensive global sampling and sequencing of the pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have enabled researchers to monitor its spread and to identify concerning new variants. Two important determinants of variant spread are how frequently they arise within individuals and how likely they are to be transmitted. To characterize within-host diversity and transmission, we deep-sequenced 1313 clinical samples from the United Kingdom. SARS-CoV-2 infections are characterized by low levels of within-host diversity when viral loads are high and by a narrow bottleneck at transmission. Most variants are either lost or occasionally fixed at the point of transmission, with minimal persistence of shared diversity, patterns that are readily observable on the phylogenetic tree. Our results suggest that transmission-enhancing and/or immune-escape SARS-CoV-2 variants are likely to arise infrequently but could spread rapidly if successfully transmitted.


2020 ◽  
Author(s):  
Lei Shuai ◽  
Gongxun Zhong ◽  
Quan Yuan ◽  
Zhiyuan Wen ◽  
Chong Wang ◽  
...  

Abstract Minks are raised in many countries and have transmitted severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) to humans. However, the biologic properties of SARS-CoV-2 in minks are largely unknown. Here, we investigated and found that SARS-CoV-2 replicates efficiently in both the upper and lower respiratory tracts, and transmits efficiently in minks via respiratory droplets; pulmonary lesions caused by SARS-CoV-2 in minks are similar to those seen in humans with COVID-19. We further found that a spike protein-based subunit vaccine largely prevented SARS-CoV-2 replication and lung damage caused by SARS-CoV-2 infection in minks. Our study indicates that minks are a useful animal model for evaluating the efficacy of drugs or vaccines against COVID-19 and that vaccination is a potential strategy to prevent minks from transmitting SARS-CoV-2.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Richard Avoi ◽  
Syed Sharizman Syed Abdul Rahim ◽  
Mohammad Saffree Jeffree ◽  
Visweswara Rao Pasupuleti

  Since the Coronavirus disease 2019 (COVID-19) pandemic unfolded in China (Huang et al., 2020) back in December 2019, thus far, more than five million people were infected with the virus and 333,401 death were recorded worldwide (WHO, 2020b). The exponential increase in number shows that COVID-19 spreads faster compared to Severe Acute Respiratory Syndrome (SARS) or Middle East Respiratory Syndrome (MERS). A study (Zou et al., 2020) has shown that high viral loads of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are detected in symptomatic patients soon after the onset of symptoms, wherein the load content is higher in their nose than in their throat. Furthermore, the same study has revealed similar viral loads between symptomatic and asymptomatic patients. Therefore, these findings may suggest the possibility of COVID-19 transmission earlier before the onset of symptoms itself. In the early stages of the pandemic, the control measures carried out have focused on screening of symptomatic person; at the time, the whole world thought that the spread of SARS-Cov-2 would only occur through symptomatic person-to-person transmission. In comparison, transmission in SARS would happen after the onset of illness, whereby the viral loads in the respiratory tract peaked around ten days after the development of symptoms by patients (Peiris et al., 2003). However, case detection for SARS (i.e. screening of symptomatic persons) will be grossly inadequate for the current COVID-19 pandemic, thus requiring different strategies to detect those infected with SARS-CoV-2 before they develop the symptoms.


2021 ◽  
pp. 2979-2983
Author(s):  
Hamong Suharsono ◽  
Ali Ghufron Mukti ◽  
Ketut Suryana ◽  
I. Wayan Masa Tenaya ◽  
Dilasdita Kartika Pradana ◽  
...  

Background and Aim: Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has spread rapidly globally, resulting in a pandemic. In humans, the main routes of transmission are respiratory droplets and close contact with infected individuals or through contact with an object infected with the virus, followed by touching mouth, nose, or eyes. It is assumed that SARS-CoV-2 was originated in wild animals and was then transmitted to humans. Although some wildlife and domestic animals can be naturally or experimentally infected with the virus, the intermediate hosts that transmitted it to humans are still unknown. Understanding the dynamics of SARS-CoV-2 associated with possible zoonotic transmission of intermediate hosts is considered critical. Reportedly, cats or dogs living with COVID-19-positive humans tested positive for the disease, suggesting that the virus was transmitted to the animals from humans. Information regarding the epidemiological investigation and comprehensive studies is limited. Therefore, it is still unclear how high is the correlation of infection in humans and pet animals, especially those living together. The aim of this study was to investigate the possibility of SARS-CoV-2 infection in the pets of patients with COVID-19 who were hospitalized at the Wangaya hospital, Denpasar, Bali, Indonesia. Materials and Methods: A total of seven clinically asymptomatic pets (six dogs of different races and sexes and a cat [age, 360-2920 days]) were included in this study. These animals belonged to patients with confirmed SARS-CoV-2 infection from August to November 2020. Nasal swab and nasopharyngeal samples were collected from the pets individually under anesthetic condition and were collected 6-12 days after confirmed SARS-CoV-2 infection in owners and hospitalization at the Wangaya Hospital. The swab samples were then processed for RNA isolation and tested using reverse transcription-polymerase chain reaction (RT-PCR) for SARS-CoV-2, in accordance with the World Health Organization manual 2020. Results: RT-PCR results for all seven RNA samples, prepared from the swab samples, were negative. For the samples, all PCR products were below the threshold limit, suggesting no genetic material belonging to the samples tested. Conclusion: This was the first preliminary study of COVID-19 on pets in pandemic using RT-PCR. The study tested a very limited quantity of samples, and all of them were negative. However, the way in which the samples were prepared was considered appropriate. Therefore, in further studies, testing of more samples of pets of more individuals with confirmed SARS-CoV-2 infection is required.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Miha Lucovnik ◽  
Mirjam Druskovic ◽  
Marijana Vidmar Simic ◽  
Ivan Verdenik ◽  
Vita Mesaric ◽  
...  

Abstract Objectives To compare perinatal outcomes in women with vs. without severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Methods Perinatal outcomes in SARS-CoV-2 positive pregnant women who delivered at our institution between October 27th 2020 and January 31st 2021 were compared to SARS-CoV-2 negative pregnancies (contemporary controls) and historical 2019 controls matched by maternal age, pre-pregnancy body mass index and parity. Testing was performed based on symptoms or close contact at any time during pregnancy and as part of universal screening at hospital admission. Multivariable log-linear regression models were used adjusting for potential confounders (p < 0.05 statistically significant). Results One thousand three hundred seventeen women delivered at our institution during the study period. 1,124 (85%) tested negative and 193 (15%) positive for SARS-CoV-2. 189 (98%) were infected during third trimester. 19 (10%) were asymptomatic, 171 (89%) had mild to moderate coronavirus disease 2019 (COVID-19), and 3 (2%) were critically ill with one case of maternal death. There were no significant differences in preterm birth, small-for-gestational-age birth weight, congenital anomalies, operative delivery, intrapartum hypoxia, and perinatal mortality in SARS-CoV-2 positive pregnancies compared to contemporary reference group or historical controls from pre-COVID-19 period. Labor was more commonly induced in SARS-CoV-2 positive women compared to reference SARS-CoV-2 negative group (68 [35%] vs. 278 [25%], adjusted odds ratio 1.62; 95% confidence interval 1.14–2.28). Conclusions SARS-CoV-2 infection in pregnancy was not strongly associated with adverse perinatal outcomes. While the majority of SARS-CoV-2 positive women had no or mild/moderate symptoms, 2% were critically ill, with one case of maternal death.


Sign in / Sign up

Export Citation Format

Share Document