scholarly journals The neural basis of creative production: A cross-modal ALE meta-analysis

2021 ◽  
Author(s):  
Steven Brown ◽  
Eunseon Kim

One of the central questions about the cognitive neuroscience of creativity is the extent to which creativity depends on either domain-specific or domain-general mechanisms. To address this question, we carried out two parallel activation likelihood estimation meta-analyses of creativity: 1) a motoric analysis that combined studies across five domains of creative production (verbalizing, music, movement, writing, and drawing), and 2) an analysis of the Alternate Uses divergent-thinking task. All experiments contained a contrast between a creative task and a matched non-creative or less-creative task that controlled for the sensorimotor demands of task performance. The activation profiles of the two meta-analyses were non-overlapping, but both pointed to a domain-specific interpretation in which creative production is, at least in part, an enhancement of sensorimotor brain areas involved in non-creative production. The most concordant areas of activation in the motoric meta-analysis were high-level motor areas such as the pre-supplementary motor area and inferior frontal gyrus that interface motor planning and executive control, suggesting a means of uniting domain-specificity and -generality in creative production.

2011 ◽  
Vol 32 (4) ◽  
pp. 799-819 ◽  
Author(s):  
RAJANI SEBASTIAN ◽  
ANGELA R. LAIRD ◽  
SWATHI KIRAN

ABSTRACTThis study reports an activation likelihood estimation meta-analysis of published functional neuroimaging studies of bilingualism. Four parallel meta-analyses were conducted by taking into account the proficiency of participants reported in the studies. The results of the meta-analyses suggest differences in the probabilities of activation patterns between high proficiency and moderate/low proficiency bilinguals. The Talairach coordinates of activation in first language processing were very similar to that of second language processing in the high proficient bilinguals. However, in the low proficient group, the activation clusters were generally smaller and distributed over wider areas in both the hemispheres than the clusters identified in the ALE maps from the high proficient group. These findings draw attention to the importance of language proficiency in bilingual neural representation.


2021 ◽  
Author(s):  
Xianyang Gan ◽  
Xinqi Zhou ◽  
Jialin Li ◽  
Guojuan Jiao ◽  
Xi Jiang ◽  
...  

ABSTRACTDisgust represents a multifaceted defensive-avoidance response. On the behavioral level, the response includes withdrawal and a disgust-specific facial expression. While both serve the avoidance of pathogens the latter additionally transmits social-communicative information. Given that common and distinct brain representation of the primary defensive-avoidance response (core disgust) and encoding of the social-communicative signal (social disgust) remain debated we employed neuroimaging meta-analyses to (1) determine brain systems generally engaged in disgust processing, and (2) segregate common and distinct brain systems for core and social disgust. Disgust processing, in general, engaged a bilateral network encompassing the insula, amygdala, occipital and prefrontal regions. Core disgust evoked stronger reactivity in left-lateralized threat detection and defensive response network including amygdala, occipital and frontal regions while social disgust engaged a right-lateralized superior temporal-frontal network engaged in social cognition. Anterior insula, inferior frontal and fusiform regions were commonly engaged during core and social disgust suggesting a common neural basis. We demonstrate a common and separable neural basis of primary disgust responses and encoding of associated social-communicative signals.


2016 ◽  
Author(s):  
Chuan-Peng Hu ◽  
Yi Huang ◽  
Simon B. Eickhoff ◽  
Kaiping Peng ◽  
Jie Sui

AbstractThe existence of a common beauty is a long-standing debate in philosophy and related disciplines. In the last two decades, cognitive neuroscientists have sought to elucidate this issue by exploring the common neural basis of the experience of beauty. Still, empirical evidence for such common neural basis of different forms of beauty is not conclusive. To address this question, we performed an activation likelihood estimation (ALE) meta-analysis on the existing neuroimaging studies of beauty appreciation of faces and visual art by non-expert adults (49 studies, 982 participants, meta-data are available at https://osf.io/s9xds/). We observed that perceiving these two forms of beauty activated distinct brain regions: while the beauty of faces convergently activated the left ventral striatum, the beauty of visual art convergently activated the anterior medial prefrontal cortex (aMPFC). However, a conjunction analysis failed to reveal any common brain regions for the beauty of visual art and faces. The implications of these results are discussed.


2017 ◽  
Author(s):  
Cameron Parro ◽  
Matthew L Dixon ◽  
Kalina Christoff

AbstractCognitive control mechanisms support the deliberate regulation of thought and behavior based on current goals. Recent work suggests that motivational incentives improve cognitive control, and has begun to elucidate the brain regions that may support this effect. Here, we conducted a quantitative meta-analysis of neuroimaging studies of motivated cognitive control using activation likelihood estimation (ALE) and Neurosynth in order to delineate the brain regions that are consistently activated across studies. The analysis included functional neuroimaging studies that investigated changes in brain activation during cognitive control tasks when reward incentives were present versus absent. The ALE analysis revealed consistent recruitment in regions associated with the frontoparietal control network including the inferior frontal sulcus (IFS) and intraparietal sulcus (IPS), as well as consistent recruitment in regions associated with the salience network including the anterior insula and anterior mid-cingulate cortex (aMCC). A large-scale exploratory meta-analysis using Neurosynth replicated the ALE results, and also identified the caudate nucleus, nucleus accumbens, medial thalamus, inferior frontal junction/premotor cortex (IFJ/PMC), and hippocampus. Finally, we conducted separate ALE analyses to compare recruitment during cue and target periods, which tap into proactive engagement of rule-outcome associations, and the mobilization of appropriate viscero-motor states to execute a response, respectively. We found that largely distinct sets of brain regions are recruited during cue and target periods. Altogether, these findings suggest that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal networks may allow control demands to be precisely tailored based on expected value.


2021 ◽  
pp. 1-13
Author(s):  
Zeguo Qiu ◽  
Junjing Wang

Abstract Background Previous literature has extensively investigated the brain activity during response inhibition in adults with addiction. Inconsistent results including both hyper- and hypo-activities in the fronto-parietal network (FPN) and the ventral attention network (VAN) have been found in adults with addictions, compared with healthy controls (HCs). Methods Voxel-wise meta-analyses of abnormal task-evoked regional activity were conducted for adults with substance dependence (SD) and behavioral addiction during response inhibition tasks to solve previous inconsistencies. Twenty-three functional magnetic resonance imaging studies including 479 substance users, 38 individuals with behavioral addiction and 494 HCs were identified. Results Compared with HCs, all addictions showed hypo-activities in regions within FPN (inferior frontal gyrus and supramarginal gyrus) and VAN (inferior frontal gyrus, middle temporal gyrus, temporal pole and insula), and hyper-activities in the cerebellum during response inhibition. SD subgroup showed almost the same activity patterns, with an additional hypoactivation of the precentral gyrus, compared with HCs. Stronger activation of the cerebellum was associated with longer addiction duration for adults with SD. We could not conduct meta-analytic investigations into the behavioral addiction subgroup due to the small number of datasets. Conclusion This meta-analysis revealed altered activation of FPN, VAN and the cerebellum in adults with addiction during response inhibition tasks using non-addiction-related stimuli. Although FPN and VAN showed lower activity, the cerebellum exhibited stronger activity. These results may help to understand the neural pathology of response inhibition in addiction.


2021 ◽  
Author(s):  
Antonio Criscuolo ◽  
Victor Pando-Naude ◽  
Leonardo Bonetti ◽  
Peter Vuust ◽  
Elvira Brattico

AbstractMusical expertise is a model of neuroplasticity associated with pervasive, long-lasting training effects. Indeed, decades of cognitive neuroscience widely investigated brain functional and structural changes associated with musical training, providing a widespread and variegated set of findings. However, several controversial results emerged, leading the neuroscientific community to lack a well-defined neuro-functional-anatomy of musical expertise. Here, we performed a systematic review and meta-analysis of publications investigating brain functional and structural differences between musicians and non-musicians. Eighty-four publications were included in the qualitative synthesis. Coordinate-based meta-analyses were conducted using the anatomic/activation likelihood estimation (ALE) method implemented in GingerALE, with a total of 675 foci, 79 experiments and 2780 participants. Results showed a widespread and complex array of functional and structural changes in musicians’ brains, revealing for the first time a comprehensive picture of the brain plasticity associated with musical training.


2017 ◽  
Author(s):  
Han Bossier ◽  
Ruth Seurinck ◽  
Simone Kühn ◽  
Tobias Banaschewski ◽  
Gareth J. Barker ◽  
...  

AbstractGiven the increasing amount of neuroimaging studies, there is a growing need to summarize published results. Coordinate-based meta-analyses use the locations of statistically significant local maxima with possibly the associated effect sizes to aggregate studies. In this paper, we investigate the influence of key characteristics of a coordinate-based meta-analysis on (1) the balance between false and true positives and (2) the reliability of the outcome from a coordinate-based meta-analysis. More particularly, we consider the influence of the chosen group level model at the study level (fixed effects, ordinary least squares or mixed effects models), the type of coordinate-based meta-analysis (Activation Likelihood Estimation, fixed effects and random effects meta-analysis) and the amount of studies included in the analysis (10, 20 or 35). To do this, we apply a resampling scheme on a large dataset (N = 1400) to create a test condition and compare this with an independent evaluation condition. The test condition corresponds to subsampling participants into studies and combine these using meta-analyses. The evaluation condition corresponds to a high-powered group analysis. We observe the best performance when using mixed effects models in individual studies combined with a random effects meta-analysis. This effect increases with the number of studies included in the meta-analysis. We also show that the popular Activation Likelihood Estimation procedure is a valid alternative, though the results depend on the chosen threshold for significance. Furthermore, this method requires at least 20 to 35 studies. Finally, we discuss the differences, interpretations and limitations of our results.


2011 ◽  
Vol 27 (8) ◽  
pp. 605-611 ◽  
Author(s):  
J. Radua ◽  
D. Mataix-Cols ◽  
M.L. Phillips ◽  
W. El-Hage ◽  
D.M. Kronhaus ◽  
...  

AbstractMeta-analyses are essential to summarize the results of the growing number of neuroimaging studies in psychiatry, neurology and allied disciplines. Image-based meta-analyses use full image information (i.e. the statistical parametric maps) and well-established statistics, but images are rarely available making them highly unfeasible. Peak-probability meta-analyses such as activation likelihood estimation (ALE) or multilevel kernel density analysis (MKDA) are more feasible as they only need reported peak coordinates. Signed-differences methods, such as signed differential mapping (SDM) build upon the positive features of existing peak-probability methods and enable meta-analyses of studies comparing patients with controls. In this paper we present a new version of SDM, named Effect Size SDM (ES-SDM), which enables the combination of statistical parametric maps and peak coordinates and uses well-established statistics. We validated the new method by comparing the results of an ES-SDM meta-analysis of studies on the brain response to fearful faces with the results of a pooled analysis of the original individual data. The results showed that ES-SDM is a valid and reliable coordinate-based method, whose performance might be additionally increased by including statistical parametric maps. We anticipate that ES-SDM will be a helpful tool for researchers in the fields of psychiatry, neurology and allied disciplines.


Sign in / Sign up

Export Citation Format

Share Document