scholarly journals Thermal biology of two sympatric Lacertids lizards (Lacerta diplochondrodes and Parvilacerta parva) from Western Anatolia

2021 ◽  
Author(s):  
Mehmet Kürşat Şahin ◽  
Arda Cem Kuyucu

AbstractSympatric lizard species differing in morphology present convenient models for studying the differentiation in thermal behavior and the role of morphological differences in thermal biology. Here we studied the thermal biology of two sympatric lizard species which occur together sympatrically in western Anatolia, Frig Valley. These two species differ in body size, with the larger Lacerta diplochondrodes and smaller Parvilacerta parva. Field body temperatures of the individuals belonging to both species were recorded in the activity period. Additionally, several environmental parameters including solar radiation, substrate temperature, air temperature and wind speed were also monitored to investigate the relative effect of these abiotic parameters on thermal biology of the two species. The field body temperature and temperature excess (difference between body and substrate temperature) of two species while being relatively close to each other, showed seasonal differences. Solar radiation, substrate temperature and air temperature were the main effective factors on thermal biology in the field. Additionally, although body size did not have a direct significant effect on body temperature or temperature excess, the interaction between body size and wind were effective on temperature excess. In conclusion, our study partially supports the conservation of thermal biology of related lizard species.

2019 ◽  
Vol 35 (4) ◽  
pp. 149-156 ◽  
Author(s):  
Zaida Ortega ◽  
Abraham Mencía ◽  
Kleber Martins ◽  
Priscilla Soares ◽  
Vanda Lúcia Ferreira ◽  
...  

AbstractOur aim was to disentangle the effects of different heat sources and the non-thermal properties of the substrate in the microhabitat choices of two lizard species living in savanna habitats of central-western Brazil: the teiidAmeivulaaff.ocellifera(N = 43) and the tropiduridTropidurus oreadicus(N = 23). To this end, a mixed structural resource selection function (mixed-SRSF) approach was used, modelling the probability of finding a lizard on a certain microhabitat based on environmental variables of used and simultaneously available places. First, we controlled for the effects of solar radiation, convection and the physical thermal properties of the substrate on substrate temperature. Then we assessed the effects of solar radiation, convection, conduction and the non-thermal properties of the substrate in the probability of use of a certain microhabitat. Results confirmed that substrate temperature was mediated by: air convection > solar radiation > physical thermal properties of the substrates. Moreover, the mixed-SRSF revealed that direct solar radiation and the non-thermal properties of the substrates were the only drivers of microhabitat selection for both species, with approximately the same strength. Our novel approach allowed splitting of the effect of different mechanisms in the microhabitat selection of lizards, which makes it a powerful tool for assessing the conformation of the interactions between different environmental variables mediating animal behaviour.


2018 ◽  
Vol 66 (4) ◽  
pp. 235 ◽  
Author(s):  
Luh P. E. K. Yuni ◽  
Susan M. Jones ◽  
Erik Wapstra

Body temperatures in ectotherms are strongly affected by their thermal environment. Ectotherms respond to variation in the thermal environment either by modification of behavioural thermoregulation to maintain their optimal body temperature or by shifting their optimal body temperature. In this study, the body temperatures of males of three populations of spotted snow skinks, Niveoscincus ocellatus, living along an altitudinal gradient (low, mid, and high altitude) were studied in the field and laboratory in spring, summer, and autumn, representing the full activity period of this species. The environmental variation across both sites and seasons affected their field active body temperatures. At the low and mid altitude, N. ocellatus had a higher mean body temperature than at the high altitude. Animals achieved their thermal preference at the low and mid altitude sites in all seasons. At the high altitude, however, N. ocellatus struggled to reach its preferred body temperatures, especially in autumn. The lower body temperature at the high-altitude site is likely due to limited thermal opportunity and/or an effect of avoiding the costs associated with increased intensity of basking.


Author(s):  
Cecilia Inés Robles ◽  
Gilda Luciana Vivas ◽  
Monique Halloy

Habitat use and thermal biology are closely related, because thermal microclimates vary spatially. The use of habitat and microhabitat by different species influences many of their traits, such as their physiology, and may, therefore exert a direct effect on survival. Ectothermal animals, such as lizards, are affected by thermal and biophysical environments they inhabit, and the particular use of a given substrate reflects an overlap between thermally adequate microhabitats, and behavioral preferences. By exploiting certain microhabitats and avoiding others, many lizards tend to maintain their body temperature within a range that allows maximum performance. Here, we evaluate how two syntopic species of lizards, Liolaemus pacha and L. ramirezae, use substrates with different exposure to solar radiation. Our hypothesis is that L. pacha uses both soil and rock substrates indistinctly, due to being a generalist species, whereas L. ramirezae uses the rock substrate more frequently, due to its saxicolous habits. We expect temperatures to be different both in substrates, and in different exposures, and thermal characteristics of each species to condition their use. For example, because the body temperature range of L. pacha is wider, we predict that substrate use will be wider. A pre-established 100x75 m area was monitored during four Austral springs and summers between 2011 and 2015, in Los Cardones, Amaicha del Valle, Tucumán, Argentina. Species' substrate where the lizard was found (soil or rock), and exposure to solar radiation: sun, filtered shade or full shade was recorded. After capture, lizard body temperature (Tb), substrate temperature (Ts), and air temperature (Ta) were recorded in the place of the first observation of the lizard. Obtained results show that L. pacha and L. ramirezae had a more persistent use of the rock than the soil substrate, thus considering them saxicolous species. Further, they were frequently observed exposed to direct sunlight. Average body temperature was higher than environmental temperature (Ts and Ta), and significantly different in each exposure type (sun, filtered shade and full shade), and in both substrates (rock and soil). Differential use of substrate and the relationship between body temperature and microhabitat temperatures suggests that L. pacha and L. ramirezae are “active thermoregulators”, using both substrate surfaces and solar radiation as heat sources. 


1993 ◽  
Vol 71 (12) ◽  
pp. 2391-2400 ◽  
Author(s):  
Laurie J. Vitt ◽  
Peter A. Zani ◽  
Janalee P. Caldwell ◽  
Richard D. Durtsche

The whiptail lizard Cnemidophorus deppii was studied during late dry season on a tropical beach on the Pacific coast of Nicaragua. Most aspects of the ecology of this species are similar to those of other active foraging lizard species studied. Individual C. deppii spend most of a typical daily activity period on sand moving from vegetation patch to vegetation patch, presumably in search of food. The amount of time spent in the sun is greatest in early morning and at its lowest level at midday. The average rate of movement was 0.048 ± 0.004 m/s. Body temperatures of active lizards averaged 40.0 ± 0.25 °C, and most activity occurred during morning and late afternoon. Body temperatures were significantly lower in whiptails active during the morning than later in the day. Forty-two types of prey were identified in stomachs, with termites, spiders, and various orthopterans accounting for most of the diet volumetrically. There was no correlation between lizard size and prey size. There was a significant negative relationship between prey width and the number of prey in stomachs. Snout–vent length (SVL) at sexual maturity was 60 mm for females and 58 mm for males. Mature females averaged 63.8 ± 0.7 mm SVL and produced clutches varying from 1 to 3 eggs ([Formula: see text]). Oviductal eggs averaged 13.6 ± 0.64 × 7.7 ± 0.21 mm in size. There was no significant relationship between female SVL and clutch size. Relative clutch mass was similar to that for other active foraging lizard species. Sexual dimorphism was apparent in coloration (males brightly colored), body size (males larger), and relative head size (male heads larger independent of body size differences). These differences presumably are due to sexual selection.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Author(s):  
José J. F. Cordeiro Júnior ◽  
Héliton Pandorfi ◽  
José A. D. Barbosa Filho ◽  
Alex S. Moraes ◽  
Luiz A. de Almeida Neto ◽  
...  

ABSTRACT Brazil is the world’s largest producer of sugarcane (Saccharum officinarum L.) and research aimed at propagation has promoted higher quality in production. The objective of this study was to investigate the effect of the variation of micrometeorological elements on the survival and quality of pre-sprouted sugarcane plantlets. The study was carried out in a protected environment (UFRPE). Plantlets of the cultivar RB92579 were obtained by the technique of production of pre-sprouted plantlets. The protected environments were divided into four modules covered with low-density polyethylene plastic + photo-selective shade nets and one module without shade net. Micrometeorological data of global and photosynthetically active solar radiation, air temperature, substrate temperature, relative humidity and the solar radiation spectrum were recorded in each module. The experiment was conducted in a completely randomized design and the principal component analysis was used to verify the association between the cultivation modules, micrometeorological variables and crop variables. Anti-UV low-density polyethylene plastic + freshnet led to lower transmittance of global solar radiation, higher percentage of photosynthetically active radiation and lower plantlet mortality. Substrate temperature above 30.2 °C resulted in higher plantlet mortality. Larger spectrum in the red range led to the production of better quality plantlet. The use of freshnet shade net promoted adequate conditions for the cultivation of sugarcane plantlets and allows obtaining better quality plantlets.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Arun Kumar Shrestha ◽  
Arati Thapa ◽  
Hima Gautam

Monitoring and prediction of the climatic phenomenon are of keen interest in recent years because it has great influence in the lives of people and their environments. This paper is aimed at reporting the variation of daily and monthly solar radiation, air temperature, relative humidity (RH), and dew point over the year of 2013 based on the data obtained from the weather station situated in Damak, Nepal. The result shows that on a clear day, the variation of solar radiation and RH follows the Gaussian function in which the first one has an upward trend and the second one has a downward trend. However, the change in air temperature satisfies the sine function. The dew point temperature shows somewhat complex behavior. Monthly variation of solar radiation, air temperature, and dew point shows a similar pattern, lower at winter and higher in summer. Maximum solar radiation (331 Wm-2) was observed in May and minimum (170 Wm-2) in December. Air temperature and dew point had the highest value from June to September nearly at 29°C and 25°C, respectively. The lowest value of the relative humidity (55.4%) in April indicates the driest month of the year. Dew point was also calculated from the actual readings of air temperature and relative humidity using the online calculator, and the calculated value showed the exact linear relationship with the observed value. The diurnal and nocturnal temperature of each month showed that temperature difference was relatively lower (less than 10°C) at summer rather than in winter.


2011 ◽  
Vol 57 (202) ◽  
pp. 367-381 ◽  
Author(s):  
Francesca Pellicciotti ◽  
Thomas Raschle ◽  
Thomas Huerlimann ◽  
Marco Carenzo ◽  
Paolo Burlando

AbstractWe explore the robustness and transferability of parameterizations of cloud radiative forcing used in glacier melt models at two sites in the Swiss Alps. We also look at the rationale behind some of the most commonly used approaches, and explore the relationship between cloud transmittance and several standard meteorological variables. The 2 m air-temperature diurnal range is the best predictor of variations in cloud transmittance. However, linear and exponential parameterizations can only explain 30–50% of the observed variance in computed cloud transmittance factors. We examine the impact of modelled cloud transmittance factors on both solar radiation and ablation rates computed with an enhanced temperature-index model. The melt model performance decreases when modelled radiation is used, the reduction being due to an underestimation of incoming solar radiation on clear-sky days. The model works well under overcast conditions. We also seek alternatives to the use of in situ ground data. However, outputs from an atmospheric model (2.2 km horizontal resolution) do not seem to provide an alternative to the parameterizations of cloud radiative forcing based on observations of air temperature at glacier automatic weather stations. Conversely, the correct definition of overcast conditions is important.


Sign in / Sign up

Export Citation Format

Share Document