scholarly journals Multicellular Spatial Model of RNA Virus Replication and Interferon Responses Reveals Factors Controlling Plaque Growth Dynamics

2021 ◽  
Author(s):  
Josua O. Aponte-Serrano ◽  
Jordan J.A. Weaver ◽  
T.J. Sego ◽  
James A. Glazier ◽  
Jason Edward Shoemaker

Respiratory viruses present major health challenges, as evidenced by the 2009 influenza pandemic and the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Severe RNA virus respiratory infections often correlate with high viral load and excessive inflammation. Understanding the dynamics of the innate immune response and its manifestation at the cell and tissue levels are vital to understanding the mechanisms of immunopathology and developing improved, strain independent treatments. Here, we present a novel spatialized multicellular spatial computational model of two principal components of tissue infection and response: RNA virus replication and type-I interferon mediated antiviral response to infection within lung epithelial cells. The model is parameterized using data from influenza virus infected cell cultures and, consistent with experimental observations, exhibits either linear radial growth of viral plaques or arrested plaque growth depending on the local concentration of type I interferons. Modulating the phosphorylation of STAT or altering the ratio of the diffusion constants of interferon and virus in the cell culture could lead to plaque growth arrest. The dependence of arrest on diffusion constants highlights the importance of developing validated spatial models of cytokine signaling and the need for in vitro experiments to measure these diffusion constants. Sensitivity analyses were performed under conditions creating both continuous plaque growth and arrested plaque growth. Findings suggest that plaque growth and cytokine assay measurements should be collected during arrested plaque growth, as the model parameters are significantly more sensitive and more likely to be identifiable. The model’s metrics replicate experimental immunostaining imaging and titer based sampling assays. The model is easy to extend to include SARS-CoV-2-specific mechanisms as they are discovered or to include as a component linking epithelial cell signaling to systemic immune models.

2021 ◽  
Vol 17 (10) ◽  
pp. e1008874
Author(s):  
Josua O. Aponte-Serrano ◽  
Jordan J. A. Weaver ◽  
T. J. Sego ◽  
James A. Glazier ◽  
Jason E. Shoemaker

Respiratory viruses present major public health challenges, as evidenced by the 1918 Spanish Flu, the 1957 H2N2, 1968 H3N2, and 2009 H1N1 influenza pandemics, and the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Severe RNA virus respiratory infections often correlate with high viral load and excessive inflammation. Understanding the dynamics of the innate immune response and its manifestations at the cell and tissue levels is vital to understanding the mechanisms of immunopathology and to developing strain-independent treatments. Here, we present a novel spatialized multicellular computational model of RNA virus infection and the type-I interferon-mediated antiviral response that it induces within lung epithelial cells. The model is built using the CompuCell3D multicellular simulation environment and is parameterized using data from influenza virus-infected cell cultures. Consistent with experimental observations, it exhibits either linear radial growth of viral plaques or arrested plaque growth depending on the local concentration of type I interferons. The model suggests that modifying the activity of signaling molecules in the JAK/STAT pathway or altering the ratio of the diffusion lengths of interferon and virus in the cell culture could lead to plaque growth arrest. The dependence of plaque growth arrest on diffusion lengths highlights the importance of developing validated spatial models of cytokine signaling and the need for in vitro measurement of these diffusion coefficients. Sensitivity analyses under conditions leading to continuous or arrested plaque growth found that plaque growth is more sensitive to variations of most parameters and more likely to have identifiable model parameters when conditions lead to plaque arrest. This result suggests that cytokine assay measurements may be most informative under conditions leading to arrested plaque growth. The model is easy to extend to include SARS-CoV-2-specific mechanisms or to use as a component in models linking epithelial cell signaling to systemic immune models.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Christopher M. Weiss ◽  
Derek W. Trobaugh ◽  
Chengqun Sun ◽  
Tiffany M. Lucas ◽  
Michael S. Diamond ◽  
...  

ABSTRACTType I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3′–5′ exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNAin vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generatedIsg20−/−mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased inIsg20−/−mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle.IMPORTANCEThe host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased inIsg20−/−mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guijie Guo ◽  
Ming Gao ◽  
Xiaochen Gao ◽  
Bibo Zhu ◽  
Jinzhou Huang ◽  
...  

AbstractThe RNA-sensing pathway contributes to type I interferon (IFN) production induced by DNA damaging agents. However, the potential involvement of RNA sensors in DNA repair is unknown. Here, we found that retinoic acid-inducible gene I (RIG-I), a key cytosolic RNA sensor that recognizes RNA virus and initiates the MAVS-IRF3-type I IFN signaling cascade, is recruited to double-stranded breaks (DSBs) and suppresses non-homologous end joining (NHEJ). Mechanistically, RIG-I interacts with XRCC4, and the RIG-I/XRCC4 interaction impedes the formation of XRCC4/LIG4/XLF complex at DSBs. High expression of RIG-I compromises DNA repair and sensitizes cancer cells to irradiation treatment. In contrast, depletion of RIG-I renders cells resistant to irradiation in vitro and in vivo. In addition, this mechanism suggests a protective role of RIG-I in hindering retrovirus integration into the host genome by suppressing the NHEJ pathway. Reciprocally, XRCC4, while suppressed for its DNA repair function, has a critical role in RIG-I immune signaling through RIG-I interaction. XRCC4 promotes RIG-I signaling by enhancing oligomerization and ubiquitination of RIG-I, thereby suppressing RNA virus replication in host cells. In vivo, silencing XRCC4 in mouse lung promotes influenza virus replication in mice and these mice display faster body weight loss, poorer survival, and a greater degree of lung injury caused by influenza virus infection. This reciprocal regulation of RIG-I and XRCC4 reveals a new function of RIG-I in suppressing DNA repair and virus integration into the host genome, and meanwhile endues XRCC4 with a crucial role in potentiating innate immune response, thereby helping host to prevail in the battle against virus.


2021 ◽  
Vol 6 (58) ◽  
pp. eabc7302
Author(s):  
Tae Jin Yun ◽  
Suzu Igarashi ◽  
Haoquan Zhao ◽  
Oriana A. Perez ◽  
Marcus R. Pereira ◽  
...  

Plasmacytoid dendritic cells (pDCs) can rapidly produce interferons and other soluble factors in response to extracellular viruses or virus mimics such as CpG-containing DNA. pDCs can also recognize live cells infected with certain RNA viruses, but the relevance and functional consequences of such recognition remain unclear. We studied the response of primary DCs to the prototypical persistent DNA virus, human cytomegalovirus (CMV). Human pDCs produced high amounts of type I interferon (IFN-I) when incubated with live CMV-infected fibroblasts but not with free CMV; the response involved integrin-mediated adhesion, transfer of DNA-containing virions to pDCs, and the recognition of DNA through TLR9. Compared with transient polyfunctional responses to CpG or free influenza virus, pDC response to CMV-infected cells was long-lasting, dominated by the production of IFN-I and IFN-III, and lacked diversification into functionally distinct populations. Similarly, pDC activation by influenza-infected lung epithelial cells was highly efficient, prolonged, and dominated by interferon production. Prolonged pDC activation by CMV-infected cells facilitated the activation of natural killer cells critical for CMV control. Last, patients with CMV viremia harbored phenotypically activated pDCs and increased circulating IFN-I and IFN-III. Thus, recognition of live infected cells is a mechanism of virus detection by pDCs that elicits a unique antiviral immune response.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joel M. J. Tan ◽  
Monica E. Garner ◽  
James M. Regeimbal ◽  
Catherine J. Greene ◽  
Jorge D. Rojas Márquez ◽  
...  

AbstractThe type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3−/− mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.


2006 ◽  
Vol 203 (7) ◽  
pp. 1795-1803 ◽  
Author(s):  
Himanshu Kumar ◽  
Taro Kawai ◽  
Hiroki Kato ◽  
Shintaro Sato ◽  
Ken Takahashi ◽  
...  

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weinan Qiu ◽  
Qingyang Zhang ◽  
Rui Zhang ◽  
Yangxu Lu ◽  
Xin Wang ◽  
...  

AbstractDouble-stranded RNA (dsRNA) is a virus-encoded signature capable of triggering intracellular Rig-like receptors (RLR) to activate antiviral signaling, but whether intercellular dsRNA structural reshaping mediated by the N6-methyladenosine (m6A) modification modulates this process remains largely unknown. Here, we show that, in response to infection by the RNA virus Vesicular Stomatitis Virus (VSV), the m6A methyltransferase METTL3 translocates into the cytoplasm to increase m6A modification on virus-derived transcripts and decrease viral dsRNA formation, thereby reducing virus-sensing efficacy by RLRs such as RIG-I and MDA5 and dampening antiviral immune signaling. Meanwhile, the genetic ablation of METTL3 in monocyte or hepatocyte causes enhanced type I IFN expression and accelerates VSV clearance. Our findings thus implicate METTL3-mediated m6A RNA modification on viral RNAs as a negative regulator for innate sensing pathways of dsRNA, and also hint METTL3 as a potential therapeutic target for the modulation of anti-viral immunity.


Sign in / Sign up

Export Citation Format

Share Document