scholarly journals The architecture of Cidec-mediated interfaces between lipid droplets

2021 ◽  
Author(s):  
Iva Ganeva ◽  
Koini Lim ◽  
Jerome Boulanger ◽  
Patrick C. Hoffmann ◽  
David B. Savage ◽  
...  

Lipid droplets (LDs) are intracellular organelles responsible for storing surplus energy as neutral lipids. Their size and number vary enormously. In white adipocytes, they reach up to 100 μm in size, occupying >90% of the cell. Cidec, which is strictly required for the formation of such large LDs, is concentrated at interfaces between adjacent LDs and facilitates the directional flux of neutral lipids from the smaller to the larger LD. However, the mechanism of lipid transfer is unclear, in part because the architecture of interfaces between LDs has remained elusive. Here we visualised interfaces between LDs by electron cryo-tomography and analysed the kinetics of lipid transfer by quantitative live fluorescence microscopy. We show that transfer occurs through closely apposed intact monolayers, is slowed down by increasing the distance between the monolayers and follows exponential kinetics suggesting a pressure-driven mechanism. We thus propose that unique architectural features of LD-LD interfaces are mechanistic determinants of neutral lipid transfer.

2021 ◽  
Vol 22 (5) ◽  
pp. 2776
Author(s):  
Selma Yilmaz Dejgaard ◽  
John F. Presley

Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes.


2011 ◽  
Vol 192 (6) ◽  
pp. 1043-1055 ◽  
Author(s):  
Oludotun Adeyo ◽  
Patrick J. Horn ◽  
SungKyung Lee ◽  
Derk D. Binns ◽  
Anita Chandrahas ◽  
...  

Lipins are phosphatidate phosphatases that generate diacylglycerol (DAG). In this study, we report that yeast lipin, Pah1p, controls the formation of cytosolic lipid droplets. Disruption of PAH1 resulted in a 63% decrease in droplet number, although total neutral lipid levels did not change. This was accompanied by an accumulation of neutral lipids in the endoplasmic reticulum (ER). The droplet biogenesis defect was not a result of alterations in neutral lipid ratios. No droplets were visible in the absence of both PAH1 and steryl acyltransferases when grown in glucose medium, even though the strain produces as much triacylglycerol as wild type. The requirement of PAH1 for normal droplet formation can be bypassed by a knockout of DGK1. Nem1p, the activator of Pah1p, localizes to a single punctum per cell on the ER that is usually next to a droplet, suggesting that it is a site of droplet assembly. Overall, this study provides strong evidence that DAG generated by Pah1p is important for droplet biogenesis.


2020 ◽  
Vol 219 (4) ◽  
Author(s):  
Aymeric Chorlay ◽  
Abdou Rachid Thiam

Cellular lipid droplets (LDs) have a neutral lipid core shielded from the aqueous environment by a phospholipid monolayer containing proteins. These proteins define the biological functions of LDs, and most of them bear amphipathic helices (AH), which can selectively target to LDs, or to LD subsets. How such binding preference happens remains poorly understood. Here, we found that artificial LDs made of different neutral lipids but presenting equal phospholipid packing densities differentially recruit AHs. Varying the phospholipid density shifts the binding levels, but the differential recruitment is unchanged. We found that the binding level of AHs is defined by their interaction preference with neutral lipids and ability to decrease surface tension. The phospholipid packing level regulates mainly the amount of neutral lipid accessible. Therefore, it is the hydrophobic nature of the phospholipid packing voids that controls the binding level of AHs. Our data bring us a major step closer to understanding the binding selectivity of AHs to lipid membranes.


2020 ◽  
Author(s):  
Valeria Zoni ◽  
Wataru Shinoda ◽  
Stefano Vanni

AbstractLipid droplets (LD) are intracellular organelles responsible for lipid storage, and they emerge from the endoplasmic reticulum (ER) upon the accumulation of neutral lipids, mostly triglycerides (TG), between the two leaflets of the ER membrane. LD biogenesis takes place at ER sites that are marked by the protein seipin, which subsequently recruits additional proteins to catalyse LD formation. Deletion of seipin, however, does not abolish LD biogenesis, and its precise role in controlling LD assembly remains unclear. Here we use molecular dynamics simulations to investigate the molecular mechanism through which seipin promotes LD formation. We find that seipin clusters TG molecules inside its unconventional ring-like oligomeric structure, and that both its luminal and transmembrane regions contribute to this process. Diacylglycerol, the precursor of TG, also clusters inside the seipin oligomer, in turn promoting TG accumulation. Our results suggest that seipin remodels the membrane of specific ER sites to prime them for LD biogenesis.Significance statementMetabolic disorders related to aberrant fat accumulation, including lipodystrophy and obesity, are a particularly serious health concern. In cells, fat accumulates in intracellular organelles, named lipid droplets (LDs). LDs form in the endoplasmic reticulum, where triglycerides, the most abundant form of fat, is produced. The Bernardinelli-Seip congenital lipodystrophy type 2 protein, seipin, has been identified as a key regulator of LD formation, but its mechanism of action remains debated and its molecular details mostly obscure. Here, we use molecular dynamics simulations to investigate the mechanism of seipin. We find that seipin can cluster and trap both triglycerides and its precursor, diacylglycerol. Our results suggest that seipin organizes the lipid composition of specific ER sites to prime them for LD biogenesis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Valeria Zoni ◽  
Rasha Khaddaj ◽  
Pablo Campomanes ◽  
Abdou Rachid Thiam ◽  
Roger Schneiter ◽  
...  

Cells store energy in the form of neutral lipids (NLs) packaged into micrometer-sized organelles named lipid droplets (LDs). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics, and fluorescence microscopy, we show that interactions between lipids’ acyl-chains modulate the propensity of NLs to be stored in LDs, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, which is enriched at sites of LD formation, promotes the packaging of NLs into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LDs and promote accumulation of NLs in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.


2021 ◽  
Vol 118 (10) ◽  
pp. e2017205118
Author(s):  
Valeria Zoni ◽  
Rasha Khaddaj ◽  
Ivan Lukmantara ◽  
Wataru Shinoda ◽  
Hongyuan Yang ◽  
...  

Lipid droplets (LDs) are intracellular organelles responsible for lipid storage, and they emerge from the endoplasmic reticulum (ER) upon the accumulation of neutral lipids, mostly triglycerides (TG), between the two leaflets of the ER membrane. LD biogenesis takes place at ER sites that are marked by the protein seipin, which subsequently recruits additional proteins to catalyze LD formation. Deletion of seipin, however, does not abolish LD biogenesis, and its precise role in controlling LD assembly remains unclear. Here, we use molecular dynamics simulations to investigate the molecular mechanism through which seipin promotes LD formation. We find that seipin clusters TG, as well as its precursor diacylglycerol, inside its unconventional ring-like oligomeric structure and that both its luminal and transmembrane regions contribute to this process. This mechanism is abolished upon mutations of polar residues involved in protein–TG interactions into hydrophobic residues. Our results suggest that seipin remodels the membrane of specific ER sites to prime them for LD biogenesis.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4391
Author(s):  
Yoshiaki Sunami ◽  
Artur Rebelo ◽  
Jörg Kleeff

Pancreatic and liver cancer are leading causes of cancer deaths, and by 2030, they are projected to become the second and the third deadliest cancer respectively. Cancer metabolism, especially lipid metabolism, plays an important role in progression and metastasis of many types of cancer, including pancreatic and liver cancer. Lipid droplets are intracellular organelles that store neutral lipids, but also act as molecular messengers, and signaling factors. It is becoming increasingly evident that alterations in the regulation of lipid droplets and their associated factors influence the risk of developing not only metabolic disease but also fibrosis and cancer. In the current review article, we summarized recent findings concerning the roles of lipid droplet-associated factors, patatin-like phospholipase domain-containing 3, Transmembrane 6 superfamily member 2, and 17β-hydroxysteroid dehydrogenase 11 and 13 as well as genetic variants in pancreatic and hepatic diseases. A better understanding of cancer type- and cell type-specific roles of lipid droplet-associated factors is important for establishing new therapeutic options in the future.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3363 ◽  
Author(s):  
Peng Qin ◽  
ZhiYe Wang ◽  
DengXue Lu ◽  
HongMei Kang ◽  
Guang Li ◽  
...  

To clarify the relationship between neutral lipid content and cordycepin accumulation in Cordyceps militaris, mutants were generated from mixed spores of two C. militaris strains with varying cordycepin-producing capacities. Fifteen stable mutants producing from 0.001 to 2.363 mg/mL cordycepin were finally selected. The relative fluorescence intensities of the 15 mutants, two C. militaris strains and an Aspergillus nidulans strain at different concentrations of lyophilized mycelium powder were then investigated using the Nile red method. The mutant CM1-1-1 with the highest relative fluorescence intensity among the eighteen strains was selected for optimizing the Nile red method. Relative fluorescence intensity was linearly correlated with cordycepin concentration in liquid broth (R2 = 0.9514) and in lyophilized mycelium powder (R2 = 0.9378) for the 18 cordycepin-producing strains under identical culture conditions and with cordycepin concentration in liquid broth (R2 = 0.9727) and in lyophilized mycelium powder (R2 = 0.9613) for CM1-1-1 under eight different sets of conditions. In addition, the cordycepin content in lyophilized mycelium powder measured by the Nile red method was linearly correlated with that determined by an HPLC method (R2 = 0.9627). In conclusion, neutral lipids in lipid droplets are required during cordycepin accumulation; these neutral lipids are potential biomarkers of cordycepin biosynthesis.


2021 ◽  
Author(s):  
Valentin Guyard ◽  
Vera F Monteiro-Cardoso ◽  
Mohyeddine Omrane ◽  
Cecile Sauvanet ◽  
Audrey Houcine ◽  
...  

Lipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the Endoplasmic Reticulum (ER). The ER-protein seipin, localizing at ER-LD junctions, controls LD nucleation and growth. However, how LD biogenesis is spatially and temporally coordinated remains elusive. Here, we show that the lipid transfer proteins ORP5 and ORP8 control LD biogenesis at Mitochondria-Associated ER Membrane (MAM) subdomains, enriched in phosphatidic acid. We found that ORP5/8 regulate seipin recruitment to these MAM-LD contacts, and their loss impairs LD biogenesis. Importantly, the integrity of ER-mitochondria contact sites is crucial for the ORP5/8 function in regulating seipin-mediated LD biogenesis. Our study uncovers an unprecedented ORP5/8 role in orchestrating LD biogenesis at MAMs and brings novel insights into the metabolic crosstalk between mitochondria, ER, and LDs at membrane contact sites.


Soft Matter ◽  
2021 ◽  
Author(s):  
Meng Wang ◽  
Xin Yi

Lipid droplets are ubiquitous intracellular organelles regulating the storage and hydrolysis of neutral lipids, and play key roles in cellular metabolism and other functions such as protein trafficking and coordinating...


Sign in / Sign up

Export Citation Format

Share Document