scholarly journals A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially resolved tissue phenotyping at single-cell resolution

2021 ◽  
Author(s):  
Michele Bortolomeazzi ◽  
Lucia Montorsi ◽  
Damjan Temelkovski ◽  
Mohamed Reda Keddar ◽  
Amelia Acha-Sagredo ◽  
...  

ABSTRACTMultiplexed imaging technologies enable to study biological tissues at single-cell resolution while preserving spatial information. Currently, the analysis of these data is technology-specific and requires multiple tools, restricting the scalability and reproducibility of results. Here we present SIMPLI (Single-cell Identification from MultiPlexed Images), a novel, technology-agnostic software that unifies all steps of multiplexed imaging data analysis. After processing raw images, SIMPLI performs a spatially resolved, single-cell analysis of the tissue as wells as cell-independent quantifications of marker expression to investigate features undetectable at the cell level. SIMPLI is highly customisable and can run on desktop computers as well as high-performance computing environments, enabling workflow parallelisation for the analysis of large datasets. It produces multiple outputs at each step, including tabular text files and visualisation plots. The containerised implementation and minimum configuration requirements make SIMPLI a portable and reproducible solution for multiplexed imaging data analysis. SIMPLI is available at: https://github.com/ciccalab/SIMPLI.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mayar Allam ◽  
Thomas Hu ◽  
Shuangyi Cai ◽  
Krishnan Laxminarayanan ◽  
Robert B. Hughley ◽  
...  

AbstractDeep molecular profiling of biological tissues is an indicator of health and disease. We used imaging mass cytometry (IMC) to acquire spatially resolved 20-plex protein data in tissue sections from normal and chronic tonsillitis cases. We present SpatialViz, a suite of algorithms to explore spatial relationships in multiplexed tissue images by visualizing and quantifying single-cell granularity and anatomical complexity in diverse multiplexed tissue imaging data. Single-cell and spatial maps confirmed that CD68+ cells were correlated with the enhanced Granzyme B expression and CD3+ cells exhibited enrichment of CD4+ phenotype in chronic tonsillitis. SpatialViz revealed morphological distributions of cellular organizations in distinct anatomical areas, spatially resolved single-cell associations across anatomical categories, and distance maps between the markers. Spatial topographic maps showed the unique organization of different tissue layers. The spatial reference framework generated network-based comparisons of multiplex data from healthy and diseased tonsils. SpatialViz is broadly applicable to multiplexed tissue biology.


2021 ◽  
Author(s):  
Jonas Windhager ◽  
Bernd Bodenmiller ◽  
Nils Eling

Simultaneous profiling of the spatial distributions of multiple biological molecules at single-cell resolution has recently been enabled by the development of highly multiplexed imaging technologies. Extracting and analyzing biologically relevant information contained in complex imaging data requires the use of a diverse set of computational tools and algorithms. Here, we report the development of a user-friendly, customizable, and interoperable workflow for processing and analyzing data generated by highly multiplexed imaging technologies. The steinbock framework supports image pre-processing, segmentation, feature extraction, and standardized data export. Each step is performed in a reproducible fashion. The imcRtools R/Bioconductor package forms the bridge between image processing and single-cell analysis by directly importing data generated by steinbock. The package further supports spatial data analysis and integrates with tools developed within the Bioconductor project. Together, the tools described in this workflow facilitate analyses of multiplexed imaging raw data at the single-cell and spatial level.


2020 ◽  
Author(s):  
Nils Eling ◽  
Nicolas Damond ◽  
Tobias Hoch ◽  
Bernd Bodenmiller

SUMMARYHighly multiplexed imaging technologies enable spatial profiling of dozens of biomarkers in situ. Standard data processing pipelines quantify cell-specific features and generate object segmentation masks as well as multi-channel images. Therefore, multiplexed imaging data can be visualised across two layers of information: pixel-intensities represent the spatial expression of biomarkers across an image while segmented objects visualise cellular morphology, interactions and cell phenotypes in their microenvironment.Here we describe cytomapper, a computational tool that enables visualisation of pixel- and cell-level information obtained by multiplexed imaging. The package is written in the statistical programming language R, integrates with the image and single-cell analysis infrastructure of the Bioconductor project, and allows visualisation of single to hundreds of images in parallel. Using cytomapper, expression of multiple markers is displayed as composite images, segmentation masks are coloured based on cellular features, and selected cells can be outlined in images based on their cell type, among other functions. We illustrate the utility of cytomapper by analysing 100 images obtained by imaging mass cytometry from a cohort of type 1 diabetes patients and healthy individuals. In addition, cytomapper includes a Shiny application that allows hierarchical gating of cells based on marker expression and visualisation of selected cells in corresponding images. Together, cytomapper offers tools for diverse image and single-cell visualisation approaches and supports robust cell phenotyping via gating.


Cell Systems ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1121-1123
Author(s):  
Inna Averbukh ◽  
Noah F. Greenwald ◽  
Candace C. Liu ◽  
Michael Angelo

2021 ◽  
Author(s):  
Coleman R Harris ◽  
Eliot T McKinley ◽  
Joseph T Roland ◽  
Qi Liu ◽  
Martha J Shrubsole ◽  
...  

The multiplexed imaging domain is a nascent single-cell analysis field with a complex data structure susceptible to technical variability that disrupts inference. These in situ methods are valuable in understanding cell-cell interactions, but few standardized processing steps or normalization techniques of multiplexed imaging data are available. We implement and compare data transformations and normalization algorithms in multiplexed imaging data. Our methods adapt the ComBat and functional data registration methods to remove slide effects in this domain, and we present an evaluation framework to compare the proposed approaches. We present clear slide-to-slide variation in the raw, unadjusted data, and show that many of the proposed normalization methods reduce this variation while preserving and improving the biological signal. Further, we find that dividing this data by its slide mean, and the functional data registration methods, perform the best under our proposed evaluation framework. In summary, this approach provides a foundation for better data quality and evaluation criteria in the multiplexed domain.


2021 ◽  
Vol 9 ◽  
Author(s):  
Cindy X. Chen ◽  
Han Sang Park ◽  
Hillel Price ◽  
Adam Wax

Holographic cytometry is an ultra-high throughput quantitative phase imaging modality that is capable of extracting subcellular information from millions of cells flowing through parallel microfluidic channels. In this study, we present our findings on the application of holographic cytometry to distinguishing carcinogen-exposed cells from normal cells and cancer cells. This has potential application for environmental monitoring and cancer detection by analysis of cytology samples acquired via brushing or fine needle aspiration. By leveraging the vast amount of cell imaging data, we are able to build single-cell-analysis-based biophysical phenotype profiles on the examined cell lines. Multiple physical characteristics of these cells show observable distinct traits between the three cell types. Logistic regression analysis provides insight on which traits are more useful for classification. Additionally, we demonstrate that deep learning is a powerful tool that can potentially identify phenotypic differences from reconstructed single-cell images. The high classification accuracy levels show the platform’s potential in being developed into a diagnostic tool for abnormal cell screening.


Author(s):  
◽  
Ricky S. Adkins ◽  
Andrew I. Aldridge ◽  
Shona Allen ◽  
Seth A. Ament ◽  
...  

ABSTRACTWe report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ryan P. Lau ◽  
Teresa H. Kim ◽  
Jianyu Rao

Several advances in recent decades in digital imaging, artificial intelligence, and multiplex modalities have improved our ability to automatically analyze and interpret imaging data. Imaging technologies such as optical coherence tomography, optical projection tomography, and quantitative phase microscopy allow analysis of tissues and cells in 3-dimensions and with subcellular granularity. Improvements in computer vision and machine learning have made algorithms more successful in automatically identifying important features to diagnose disease. Many new automated multiplex modalities such as antibody barcoding with cleavable DNA (ABCD), single cell analysis for tumor phenotyping (SCANT), fast analytical screening technique fine needle aspiration (FAST-FNA), and portable fluorescence-based image cytometry analyzer (CytoPAN) are under investigation. These have shown great promise in their ability to automatically analyze several biomarkers concurrently with high sensitivity, even in paucicellular samples, lending themselves well as tools in FNA. Not yet widely adopted for clinical use, many have successfully been applied to human samples. Once clinically validated, some of these technologies are poised to change the routine practice of cytopathology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Xiao ◽  
Ying Qiao ◽  
Yudi Jiao ◽  
Na Fu ◽  
Wenxian Yang ◽  
...  

Highly multiplexed imaging technology is a powerful tool to facilitate understanding the composition and interactions of cells in tumor microenvironments at subcellular resolution, which is crucial for both basic research and clinical applications. Imaging mass cytometry (IMC), a multiplex imaging method recently introduced, can measure up to 100 markers simultaneously in one tissue section by using a high-resolution laser with a mass cytometer. However, due to its high resolution and large number of channels, how to process and interpret the image data from IMC remains a key challenge to its further applications. Accurate and reliable single cell segmentation is the first and a critical step to process IMC image data. Unfortunately, existing segmentation pipelines either produce inaccurate cell segmentation results or require manual annotation, which is very time consuming. Here, we developed Dice-XMBD1, a Deep learnIng-based Cell sEgmentation algorithm for tissue multiplexed imaging data. In comparison with other state-of-the-art cell segmentation methods currently used for IMC images, Dice-XMBD generates more accurate single cell masks efficiently on IMC images produced with different nuclear, membrane, and cytoplasm markers. All codes and datasets are available at https://github.com/xmuyulab/Dice-XMBD.


Sign in / Sign up

Export Citation Format

Share Document