scholarly journals DIA-based Proteomics Identifies IDH2 as a Targetable Regulator of Acquired Drug Resistance in Chronic Myeloid Leukemia

2021 ◽  
Author(s):  
wei liu ◽  
Yaoting Sun ◽  
weigang ge ◽  
fangfei zhang ◽  
lin gan ◽  
...  

Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia (CML). To understand the underlying resistance mechanisms in response to imatinib (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for two months to generate derivative cells with mild, intermediate and severe resistance to the drugs as defined by their increasing resistance index (RI). PulseDIA-based quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7,082 proteotypic proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin Signaling Pathway was found to be significantly enriched in both ADR- and IMA-resistant K562 cells. In particular, IDH2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated IDH2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yang Li ◽  
Guojun Zhang ◽  
Bin Wu ◽  
Wei Yang ◽  
Zhuogang Liu

Chemotherapy resistance is still a primary clinical obstacle to the successful treatment of acute myeloid leukemia (AML). The underlying mechanisms of drug resistance are complicated and have not been fully understood. Here, we found that miR-199a-5p levels were significantly reduced in refractory/relapsed AML patients compared to those who achieved complete remission after chemotherapy. Consistently, miR-199a-5p was markedly decreased in Adriamycin-resistant AML K562/ADM cells in contrast with Adriamycin-sensitive K562 cells, and its decrement dramatically correlated with the chemoresistance of AML cells. Furthermore, we demonstrated that the basic and Adriamycin-induced autophagic activity in K562/ADM cells was higher than that in K562 cells. This inducible autophagy played a prosurvival role and contributed to the development of acquired drug resistance. Importantly, we investigated that miR-199a-5p could negatively regulate autophagy, at least in part, by inhibiting damage regulator autophagy modulator (DRAM1) expression at both the transcriptional and posttranscriptional level. miR-199a-5p bound directly to the 3′-UTR of DRAM1 mRNA which was a functional target of miR-199a-5p. Indeed, downregulation of DRAM1 gene by siRNA in K562/ADM cells resulted in autophagy suppression and chemosensitivity restoration. These results revealed that the miR-199a-5p/DRAM1/autophagy signaling represented a novel pathway regulating chemoresistance, indicating a potential therapeutic strategy for the intervention in drug-resistant AML.


2020 ◽  
Vol 9 (18) ◽  
pp. 6739-6751
Author(s):  
Matthieu Lewis ◽  
Valérie Prouzet‐Mauléon ◽  
Florence Lichou ◽  
Elodie Richard ◽  
Richard Iggo ◽  
...  

Author(s):  
Sezgi Kipcak ◽  
Buket Ozel ◽  
Cigir B. Avci ◽  
Leila S. Takanlou ◽  
Maryam S. Takanlou ◽  
...  

Background: Chronic myeloid leukemia (CML), is characterized by a reciprocal translocation t(9;22) and forms the BCR/ABL1 fusion gene, which is called the Philadelphia chromosome. The therapeutic targets for CML patients which are mediated with BCR/ABL1 oncogenic are tyrosine kinase inhibitors such as imatinib, dasatinib, and nilotinib. The latter two of which have been approved for the treatment of imatinib-resistant or intolerance CML patients. Mitotic catastrophe (MC) is one of the non-apoptotic mechanisms which frequently initiated in types of cancer cells in response to anti-cancer therapies; pharmacological inhibitors of G2 checkpoint members or genetic suppression of PLK1, PLK2, ATR, ATM, CHK1, and CHK2 can trigger DNA-damage-stimulated mitotic catastrophe. PLK1, AURKA/B anomalously expressed in CML cells, that phosphorylation and activation of PLK1 occur by AURKB at centromeres and kinetochores. Objective: The purpose of this study was to investigate the effect of dasatinib on the expression of genes in MC and apoptosis pathways in K562 cells. Methods: Total RNA was isolated from K-562 cells treated with the IC50 value of dasatinib and untreated cells as a control group. The expression of MC and apoptosis-related genes were analyzed by the qRT-PCR system. Results: The array-data demonstrated that dasatinib-treated K562 cells significantly caused the decrease of several genes (AURKA, AURKB, PLK, CHEK1, MYC, XPC, BCL2, and XRCC2). Conclusion: The evidence supply a basis to support clinical researches for the suppression of oncogenes such as PLKs with AURKs in the treatment of types of cancer especially chronic myeloid leukemia.


2021 ◽  
pp. 000370282110245
Author(s):  
Qian Zhang ◽  
Minlu Ye ◽  
Lingyan Wang ◽  
Dongmei Jiang ◽  
Shuting Yao ◽  
...  

Multidrug resistance (MDR) is highly associated with poor prognosis of chronic myeloid leukemia (CML). This work aims to explore whether the laser tweezers Raman spectroscopy (LTRS) could be practical in separating adriamycin (ADR) resistance CML cells K562/ADR from its parental cells K562, and to explore the potential mechanisms. Detection of LTRS initially reflected the spectral differences caused by chemoresistance including bands assigned to carbohydrates, amino acid, protein, lipids and nucleic acid. In addition, principal components analysis (PCA) as well as the classification and regression trees (CRT) algorithms showed that the specificity and sensitivity were above 90%. Moreover, the band data-based CRT model and receiver operating characteristic (ROC) curve further determined some important bands and band intensity ratios to be reliable indexes in discriminating K562 chemoresistance status. Finally, we highlighted three metabolism pathways correlated with chemoresistance. This work demonstrates that the label-free LTRS analysis combined with multivariate statistical analyses have great potential to be a novel analytical strategy at the single-cell level for rapid evaluation the chemoresistance status of K562 cells.


2021 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Matthew C. Wang ◽  
Phillip J. McCown ◽  
Grace E. Schiefelbein ◽  
Jessica A. Brown

Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 260
Author(s):  
Ronay Cetin ◽  
Eva Quandt ◽  
Manuel Kaulich

Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ji Hoon Jung ◽  
Tae-Rin Kwon ◽  
Soo-Jin Jeong ◽  
Eun-Ok Kim ◽  
Eun Jung Sohn ◽  
...  

Though tanshinone IIA and cryptotanshinone possess a variety of biological effects such as anti-inflammatory, antioxidative, antimetabolic, and anticancer effects, the precise molecular targets or pathways responsible for anticancer activities of tanshinone IIA and cryptotanshinone in chronic myeloid leukemia (CML) still remain unclear. In the present study, we investigated the effect of tanshinone IIA and cryptotanshinone on the Janus activated kinase (JAK)/signal transducer and activator of transcription (STAT) signaling during apoptotic process. We found that both tanshinone IIA and cryptotanshinone induced apoptosis by activation of caspase-9/3 and Sub-G1 accumulation in K562 cells. However, they have the distinct JAK/STAT pathway, in which tanshinone IIA inhibits JAK2/STAT5 signaling, whereas cryptotanshinone targets the JAK2/STAT3. In addition, tanshinone IIA enhanced the expression of both SHP-1 and -2, while cryptotanshinone regulated the expression of only SHP-1. Both tanshinone IIA and cryptotanshinone attenuated the expression of bcl-xL, survivin, and cyclin D1. Furthermore, tanshinone IIA augmented synergy with imatinib, a CML chemotherapeutic drug, better than cryptotanshinone in K562 cells. Overall, our findings suggest that the anticancer activity of tanshinone IIA and cryptotanshinone is mediated by the distinct the JAK/STAT3/5 and SHP1/2 signaling, and tanshinone IIA has the potential for combination therapy with imatinib in K562 CML cells.


Gene ◽  
2019 ◽  
Vol 683 ◽  
pp. 195-209 ◽  
Author(s):  
Ge Li ◽  
Ke Wang ◽  
Yue Li ◽  
Jinging Ruan ◽  
Cong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document