scholarly journals Axonal CB1 receptors mediate inhibitory bouton formation via cAMP increase

2021 ◽  
Author(s):  
Jian Liang ◽  
Dennis LH Kruijssen ◽  
Aniek CJ Verschuuren ◽  
Bas JB Voesenek ◽  
Feline Benavides ◽  
...  

AbstractExperience-dependent formation and removal of synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by formation of inhibitory synapses. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons, we found that CB1 receptor activation mediated formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs proteins using DREADDs. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate a novel role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.

2010 ◽  
Vol 104 (4) ◽  
pp. 1923-1932 ◽  
Author(s):  
Fouad Lemtiri-Chlieh ◽  
Eric S. Levine

The neurotrophin brain-derived neurotrophic factor (BDNF) is a potent regulator of inhibitory synaptic transmission, although the locus of this effect and the underlying mechanisms are controversial. We explored a potential interaction between BDNF and endogenous cannabinoid (endocannabinoid) signaling because activation of type 1 cannabinoid (CB1) receptors potently regulates γ-aminobutyric acid (GABA) release and both trkB tyrosine kinase receptors and CB1 receptors are highly expressed at synapses in neocortical layer 2/3. Here, we found that the effects of BDNF at inhibitory cortical synapses are mediated by the release of endocannabinoids acting retrogradely at presynaptic CB1 receptors. Specifically, acute application of BDNF rapidly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) via postsynaptic trkB receptor activation because intracellular delivery of the tyrosine kinase inhibitor K252a completely blocked the BDNF effect. Although triggered by postsynaptic trkB activation, BDNF exposure decreased presynaptic release probability, as evidenced by increases in the paired-pulse ratio and coefficient of variation of evoked responses. In addition, BDNF decreased the frequency but not the amplitude of action potential–independent miniature IPSCs and BDNF did not alter the postsynaptic response to locally applied GABA. These results suggest that BDNF induces the release of a retrograde messenger from the postsynaptic cell that regulates presynaptic neurotransmitter release. Consistent with a role for endocannabinoids as the retrograde signal, the effect of BDNF on IPSCs was blocked by CB1 receptor antagonists and was occluded by a cannabinoid receptor agonist. Furthermore, inhibiting endocannabinoid synthesis or transport also disrupted the BDNF effect, implicating postsynaptic endocannabinoid release triggered by BDNF.


2020 ◽  
Vol 13 (663) ◽  
pp. eabd8379
Author(s):  
Heba Ali ◽  
Lena Marth ◽  
Dilja Krueger-Burg

Postsynaptic organizational protein complexes play central roles both in orchestrating synapse formation and in defining the functional properties of synaptic transmission that together shape the flow of information through neuronal networks. A key component of these organizational protein complexes is the family of synaptic adhesion proteins called neuroligins. Neuroligins form transsynaptic bridges with presynaptic neurexins to regulate various aspects of excitatory and inhibitory synaptic transmission. Neuroligin-2 (NLGN2) is the only member that acts exclusively at GABAergic inhibitory synapses. Altered expression and mutations in NLGN2 and several of its interacting partners are linked to cognitive and psychiatric disorders, including schizophrenia, autism, and anxiety. Research on NLGN2 has fundamentally shaped our understanding of the molecular architecture of inhibitory synapses. Here, we discuss the current knowledge on the molecular and cellular functions of mammalian NLGN2 and its role in the neuronal circuitry that regulates behavior in rodents and humans.


2021 ◽  
Vol 22 (11) ◽  
pp. 5524
Author(s):  
Kazuma Sakamoto ◽  
Tomoya Ozaki ◽  
Yuji Suzuki ◽  
Kenji Kadomatsu

Type IIa receptor tyrosine phosphatases (RPTPs) play pivotal roles in neuronal network formation. It is emerging that the interactions of RPTPs with glycans, i.e., chondroitin sulfate (CS) and heparan sulfate (HS), are critical for their functions. We highlight here the significance of these interactions in axon regeneration and synaptogenesis. For example, PTPσ, a member of type IIa RPTPs, on axon terminals is monomerized and activated by the extracellular CS deposited in neural injuries, dephosphorylates cortactin, disrupts autophagy flux, and consequently inhibits axon regeneration. In contrast, HS induces PTPσ oligomerization, suppresses PTPσ phosphatase activity, and promotes axon regeneration. PTPσ also serves as an organizer of excitatory synapses. PTPσ and neurexin bind one another on presynapses and further bind to postsynaptic leucine-rich repeat transmembrane protein 4 (LRRTM4). Neurexin is now known as a heparan sulfate proteoglycan (HSPG), and its HS is essential for the binding between these three molecules. Another HSPG, glypican 4, binds to presynaptic PTPσ and postsynaptic LRRTM4 in an HS-dependent manner. Type IIa RPTPs are also involved in the formation of excitatory and inhibitory synapses by heterophilic binding to a variety of postsynaptic partners. We also discuss the important issue of possible mechanisms coordinating axon extension and synapse formation.


2021 ◽  
pp. 108625
Author(s):  
Sheila A. Engi ◽  
Erin J. Beebe ◽  
Victoria M. Ayvazian ◽  
Fabio C. Cruz ◽  
Joseph F. Cheer ◽  
...  

2011 ◽  
Vol 286 (22) ◽  
pp. 19259-19269 ◽  
Author(s):  
Il-Ha Lee ◽  
Sung-Hee Song ◽  
Craig R. Campbell ◽  
Sharad Kumar ◽  
David I. Cook ◽  
...  

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na+ absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant (K220RGRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 (D110AGRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.


SURG Journal ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 21-29
Author(s):  
Rachel I. Downey ◽  
Cheryl L. Limebeer ◽  
Heather I. Morris ◽  
Linda A. Parker

This study investigates the role of the endocannabinoid 2-arachidonyl glycerol (2-AG) in regulating acute and anticipatory nausea in rats using the conditioned gaping model. The animals were systemically pretreated with MJN110, a selective monoacylglycerol lipase (MAGL) inhibitor, to enhance endogenous levels of 2-AG. Acute nausea was assessed using the taste reactivity model in which a flavour, saccharin, was paired with the administration of the emetic agent, lithium chloride (LiCl). Anticipatory nausea was assessed using a model of contextually elicited conditioned gaping in which a context was paired with the emetic agent, LiCl. Results indicated that MJN110 at the 10.0 mg kg-1 and 20.0 mg kg-1 dosage significantly attenuated acute and anticipatory nausea, as displayed by the significant reduction in mean number of gapes. This suppression was mediated by CB1 receptor activation as displayed by reversal of such effects when MJN110 was coadministered with the CB1 receptor antagonist, SR 141716. The results suggest that enhancement of endogenous 2-AG levels by MAGL inhibition may have anti-emetic potential. Keywords: 2-arachidonyl glycerol; monoacylglycerol lipase; endocannabinoid; nausea; conditioned gaping; CB1 receptor


2017 ◽  
Vol 313 (2) ◽  
pp. L267-L277 ◽  
Author(s):  
Z. Helyes ◽  
Á. Kemény ◽  
K. Csekő ◽  
É. Szőke ◽  
K. Elekes ◽  
...  

Sporadic clinical reports suggested that marijuana smoking induces spontaneous pneumothorax, but no animal models were available to validate these observations and to study the underlying mechanisms. Therefore, we performed a systematic study in CD1 mice as a predictive animal model and assessed the pathophysiological alterations in response to 4-mo-long whole body marijuana smoke with integrative methodologies in comparison with tobacco smoke. Bronchial responsiveness was measured with unrestrained whole body plethysmography, cell profile in the bronchoalveolar lavage fluid with flow cytometry, myeloperoxidase activity with spectrophotometry, inflammatory cytokines with ELISA, and histopathological alterations with light microscopy. Daily marijuana inhalation evoked severe bronchial hyperreactivity after a week. Characteristic perivascular/peribronchial edema, atelectasis, apical emphysema, and neutrophil and macrophage infiltration developed after 1 mo of marijuana smoking; lymphocyte accumulation after 2 mo; macrophage-like giant cells, irregular or destroyed bronchial mucosa, goblet cell hyperplasia after 3 mo; and severe atelectasis, emphysema, obstructed or damaged bronchioles, and endothelial proliferation at 4 mo. Myeloperoxidase activity, inflammatory cell, and cytokine profile correlated with these changes. Airway hyperresponsiveness and inflammation were not altered in mice lacking the CB1 cannabinoid receptor. In comparison, tobacco smoke induced hyperresponsiveness after 2 mo and significantly later caused inflammatory cell infiltration/activation with only mild emphysema. We provide the first systematic and comparative experimental evidence that marijuana causes severe airway hyperresponsiveness, inflammation, tissue destruction, and emphysema, which are not mediated by the CB1 receptor.


2014 ◽  
Vol 741 ◽  
pp. 124-131 ◽  
Author(s):  
Gilson Gonçalves dos Santos ◽  
Elayne Vieira Dias ◽  
Juliana Maia Teixeira ◽  
Maria Carolina Pedro Athie ◽  
Ivan José Magayewski Bonet ◽  
...  

2018 ◽  
Vol 23 (4) ◽  
pp. 363-374 ◽  
Author(s):  
Christopher R. Bodle ◽  
Josephine H. Schamp ◽  
Joseph B. O’Brien ◽  
Michael P. Hayes ◽  
Meng Wu ◽  
...  

Regulator of G protein signaling (RGS) proteins temporally regulate heterotrimeric G protein signaling cascades elicited by G protein–coupled receptor activation and thus are essential for cell homeostasis. The dysregulation of RGS protein expression has been linked to several pathologies, spurring discovery efforts to identify small-molecule inhibitors of these proteins. Presented here are the results of a high-throughput screening (HTS) campaign targeting RGS17, an RGS protein reported to be inappropriately upregulated in several cancers. A screen of over 60,000 small molecules led to the identification of five hit compounds that inhibit the RGS17-Gαo protein-protein interaction. Chemical and biochemical characterization demonstrated that three of these hits inhibited the interaction through the decomposition of parent compound into reactive products under normal chemical library storage/usage conditions. Compound substructures susceptible to decomposition are reported and the decomposition process characterized, adding to the armamentarium of tools available to the screening field, allowing for the conservation of resources in follow-up efforts and more efficient identification of potentially decomposed compounds. Finally, analogues of one hit compound were tested, and the results establish the first ever structure-activity relationship (SAR) profile for a small-molecule inhibitor of RGS17.


Sign in / Sign up

Export Citation Format

Share Document