scholarly journals MiR-212-3p functions as a tumor suppressor gene in group 3 medulloblastoma via targeting Nuclear Factor I/B (NFIB)

2021 ◽  
Author(s):  
Naveenkumar Perumal ◽  
Ranjana K. Kanchan ◽  
David Doss ◽  
Noah Bastola ◽  
Pranita Atri ◽  
...  

ABSTRACTBackgroundMedulloblastoma (MB), the most frequent malignant pediatric brain tumor, is subdivided into four primary subgroups, wingless-type (WNT), sonic hedgehog (SHH), group 3, and group 4. Haploinsufficiency of chromosome 17p13.3 and c-Myc amplification distinguish high-risk group 3 tumors associated with rapid metastasis, recurrence and early mortality. We sought to identify the role of miR-212-3p, which resides on chromosome 17p13.3, in the pathophysiology of group 3 MB.MethodsWe first determined miR-212-3p expression in group 3 MB using several publicly-available datasets with confirmatory studies in vitro. We then identified epigenetic regulation by studying methylation and HDAC modifications along the promoter region. We used two systems for expression restoration, i.e. transient transfection or stable induction, to delineate miR-212-3p’s tumor suppressive and biochemical properties via assays assessing cancer proliferation, migration, invasion, colony formation, along with cell cycle and apoptosis analyses. We then compared MB and miR target databases to isolate a putative target whose biochemical and oncogenic properties were similarly elucidated using either transient silencing of target expression or stable induction of miR-212-3p.ResultsRNA expression analyses revealed dramatically reduced miR-212-3p levels in group 3 tumors and cell lines mainly through epigenetic silencing via histone modifications. Restoring miR-212-3p expression reduced in vitro cancer cell proliferation, migration, colony formation, and wound healing. Elevated miR-212-3p levels shifted c-Myc phosphorylation (from serine-62 to threonine-58), triggering destabilization and degradation; concurrently, its pro-apoptotic binding partners, i.e., Bin-1 and P19ARF, were upregulated with subsequent elevated apoptotic signals. Using a combination of transcriptomic data and dual luciferase assay, we isolated an oncogenic target of miR-212-3p, i.e. NFIB, a nuclear transcription factor implicated in metastasis and recurrence in various cancers. Increased expression of NFIB was confirmed in group 3 tumors, with poor survival shown in high-expressing patients. Transient NFIB silencing in vitro reduced cancer cell proliferation, colony formation, migration, and invasion. Concurrently, in group 3 MB cells, reduced medullosphere formation along with decreased expression of stem cell markers (Nanog, Oct4, Sox2, CD133) were noted.ConclusionThese results substantiate the tumor-suppressive role of miR-212-3p in group 3 MB and provide a potential therapeutic oncogenic target implicated in metastasis and tumor recurrence.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Naveenkumar Perumal ◽  
Ranjana K. Kanchan ◽  
David Doss ◽  
Noah Bastola ◽  
Pranita Atri ◽  
...  

AbstractHaploinsufficiency of chromosome 17p and c-Myc amplification distinguish group 3 medulloblastomas which are associated with early metastasis, rapid recurrence, and swift mortality. Tumor suppressor genes on this locus have not been adequately characterized. We elucidated the role of miR-212-3p in the pathophysiology of group 3 tumors. First, we learned that miR-212-3p undergoes epigenetic silencing by histone modifications in group 3 tumors. Restoring its expression reduced cancer cell proliferation, migration, colony formation, and wound healing in vitro and attenuated tumor burden and improved survival in vivo. MiR-212-3p also triggered c-Myc destabilization and degradation, leading to elevated apoptosis. We then isolated an oncogenic target of miR-212-3p, i.e. NFIB, a nuclear transcription factor implicated in metastasis and recurrence in various cancers. Increased expression of NFIB was confirmed in group 3 tumors and associated with poor survival. NFIB silencing reduced cancer cell proliferation, migration, and invasion. Concurrently, reduced medullosphere formation and stem cell markers (Nanog, Oct4, Sox2, CD133) were noted. These results substantiate the tumor-suppressive role of miR-212-3p in group 3 MB and identify a novel oncogenic target implicated in metastasis and tumor recurrence.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii411-iii411
Author(s):  
Naveenkumar Perumal ◽  
Ranjana Kanchan ◽  
Pranita Atri ◽  
Ramakanth Venkata ◽  
Ishwor Thapa ◽  
...  

Abstract Medulloblastoma (MB), the most frequent malignant pediatric brain tumor is divided into four primary subgroups, i.e. wingless-type (WNT), sonic hedgehog (SHH), group 3, and group 4. Haploinsufficiency of chromosome 17p13.3 and c-myc amplification distinguish high-risk group 3 tumors and are associated with rapid recurrence and early mortality. We sought to identify the role of miR-212, which resides on chromosome 17p13.3, in the pathophysiology of group 3 medulloblastoma. RNA expression analyses revealed dramatically reduced levels of miR-212 in group 3 tumors and cell lines mainly through epigenetic silencing via histone modification (deacetylation). Restoring in vitro expression reduced tumor cell proliferation with decreased p-AKT and p-ERK levels, colony formation, migration and invasion in group 3 MB. Interestingly, a shift in differential c-myc phosphorylation (from serine-62 to threonine-58) was noted, resulting in reduced total c-myc levels, concurrent with elevated cellular apoptosis. In turn, pro-apoptotic binding partners of c-myc, i.e. Bin-1 and P19ARF, were upregulated in these cells. A dual luciferase assay confirmed direct targeting of miR-212 to NFIB, a nuclear transcription factor implicated in metastasis and recurrence. Concurrently, increased expression of NFIB was confirmed in group 3 MB tumors with poor survival in high NFIB-expressing patients. Transient NFIB silencing in vitro reduced tumor cell proliferation, migration and invasion, and medullosphere formation along with a reduction in stem cell markers (Nanog, Oct4, Sox2, CD133) and the multi-drug resistance maker, ABCG2. Taken together, these results substantiate the tumor suppressive role of miR-212 in group 3 medulloblastomas and provide a potential new therapeutic target, NFIB.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i4-i4
Author(s):  
Naveenkumar Perumal ◽  
Ranjana Kanchan ◽  
David Doss ◽  
Pranita Atri ◽  
Ramakanth Chirravuri Venkata ◽  
...  

Abstract Medulloblastoma (MB), the most frequent malignant pediatric brain tumor is subdivided into four primary subgroups, i.e. wingless-type (WNT), sonic hedgehog (SHH), group 3, and group 4. Haploinsufficiency of chromosome 17p13.3 and c-myc amplification distinguish high-risk group 3 tumors, which are associated with rapid metastasis, recurrence and early mortality. We sought to identify the role of miR-212, which resides on chromosome 17p13.3, in the pathophysiology of group 3 MB. RNA expression analyses revealed dramatically reduced levels of miR-212 in group 3 tumors and cell lines mainly through epigenetic silencing via histone modifications (deacetylation). Restoring in vitro miR-212 expression reduced tumor cell proliferation, colony formation, wound healing, migration and invasion with decreased p-AKT and p-ERK levels in group 3 MB cell lines. Interestingly, a shift in differential c-myc phosphorylation (from serine-62 to threonine-58) was also discovered with miR-212 expression, resulting in reduced total c-myc levels, concurrent with elevated cellular apoptosis. In turn, pro-apoptotic binding partners of c-myc, i.e. Bin-1 and P19ARF, were upregulated in these cells. These findings were recapitulated in stable inducible miR-212 expressing tumor cells. Using a combination of transcriptomic data and a dual luciferase assay, we isolated an important oncogenic target of miR-212, i.e, NFIB, a nuclear transcription factor implicated in metastasis and recurrence. Increased expression of NFIB was confirmed in group 3 tumors, with poor survival shown in high NFIB-expressing patients. As prior, transient NFIB silencing in vitro reduced not only tumor cell proliferation, colony formation, wound healing, migration and invasion, but also medullosphere formation along with decreased expression of stem cell markers (Nanog, Oct4, Sox2, CD133), confirming its role in tumor recurrence possibly via augmenting tumor stemness. Taken together, these results substantiate the tumor suppressive role of miR-212 in group 3 MB and provide a potential new oncogenic target implicated in tumor recurrence, NFIB.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingzhi Wang ◽  
Wei Yan ◽  
Xukun Li ◽  
Zhihua Liu ◽  
Tian Tian ◽  
...  

Abstract Background Ovarian cancer is the leading cause of gynecological cancer-related mortality. The novel oncogene S100A10 has been reported to be involved in cancer cell proliferation, invasion and metastasis. The role of S100A10 in ovarian cancer has not been well studied and the effect of S100A10 on chemotherapy remains unclear. The aims of the present study were to investigate the functional role of S100A10 in the progression and carboplatin sensitivity of ovarian cancer. Methods We examined the expression levels in tissues of S100A10 in 138 cases of ovarian cancer by IHC. To determine the functional roles of downregulated S100A10 in ovarian cancer, cell proliferation, colony formation, cell migration and invasion assays were performed. Chemoresistance was analyzed by apoptosis assay. A xenograft tumor model was established to confirm the role of S100A10 in carboplatin resistance in vivo. Using Western blot assays, we also explored the possible mechanisms of S100A10 in ovarian cancer. Results The results showed that increased expression of S100A10 was positively associated with carboplatin resistance (P < 0.001), tumor grade (P = 0.048) and a poorer prognosis (P = 0.0053). Functional analyses demonstrated that S100A10 suppression significantly suppressed ovarian cancer cell proliferation, colony formation, cell migration and invasion, remarkably increased carboplatin-induced apoptosis in SKOV3 and A2780 cells and inhibited tumor growth in vivo. Downregulation of S100A10 expression could inhibit cell proliferation and enhance ovarian cancer cell sensitivity to carboplatin, possibly involving the regulation of cleaved-Caspase3 and cleaved-PARP. Conclusions Together, the results of the present study reveal that S100A10 expression can be used as a predictive marker for the prognosis of ovarian cancer and chemosensitivity to carboplatin.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Fangfang Xu ◽  
Hui Li ◽  
Chengjiu Hu

AbstractNumerous evidence has recently demonstrated that long non-coding RNAs (lncRNAs) play vital roles in the oncogenesis and development of a wide range of human neoplasms. Leukemia inhibitory factor receptor antisense RNA 1 (LIFR-AS1), a novel cancer-related lncRNA, has been reported to be under-expressed in breast cancer and associated with poor prognosis. However, the exact role of LIFR-AS1 in breast cancer remains largely unclear. The present study aimed to investigate the biological role of LIFR-AS1 in breast cancer and clarify the potential molecular mechanisms. In the present study, we found that LIFR-AS1 was significantly down-regulated in both tissues and cell lines. Furthermore, over-expression of LIFR-AS1 inhibited breast cancer cell proliferation, colony formation, migration and invasion, whereas knockdown of LIFR-AS1 promoted breast cancer cell proliferation, colony formation, migration and invasion. Moreover, LIFR-AS1 was observed to up-regulate suppressor of fused gene (Sufu) expression by competitively binding to miR-197-3p in breast cancer cells. Notably, miR-197-3p inhibitor reversed the promoting effects of LIFR-AS1 knockdown on breast cancer cell proliferation, colony formation, migration and invasion. Additionally, LIFR-AS1 knockdown promoted tumor growth in vivo. To sum up, our results imply the tumor-suppressing role of LIFR-AS1 in breast cancer.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3530
Author(s):  
Jessica Gambardella ◽  
Antonella Fiordelisi ◽  
Gaetano Santulli ◽  
Michele Ciccarelli ◽  
Federica Andrea Cerasuolo ◽  
...  

The involvement of GRK2 in cancer cell proliferation and its counter-regulation of p53 have been suggested in breast cancer even if the underlying mechanism has not yet been elucidated. Furthermore, the possibility to pharmacologically inhibit GRK2 to delay cancer cell proliferation has never been explored. We investigated this possibility by setting up a study that combined in vitro and in vivo models to underpin the crosstalk between GRK2 and p53. To reach this aim, we took advantage of the different expression of p53 in cell lines of thyroid cancer (BHT 101 expressing p53 and FRO cells, which are p53-null) in which we overexpressed or silenced GRK2. The pharmacological inhibition of GRK2 was achieved using the specific inhibitor KRX-C7. The in vivo study was performed in Balb/c nude mice, where we treated BHT-101 or FRO-derived tumors with KRX-C7. In our in vitro model, FRO cells were unaffected by GRK2 expression levels, whereas BHT-101 cells were sensitive, thus suggesting a role for p53. The regulation of p53 by GRK2 is due to phosphorylative events in Thr-55, which induce the degradation of p53. In BHT-101 cells, the pharmacologic inhibition of GRK2 by KRX-C7 increased p53 levels and activated apoptosis through the mitochondrial release of cytochrome c. These KRX-C7-mediated events were also confirmed in cancer allograft models in nude mice. In conclusion, our data showed that GRK2 counter-regulates p53 expression in cancer cells through a kinase-dependent activity. Our results further corroborate the anti-proliferative role of GRK2 inhibitors in p53-sensitive tumors and propose GRK2 as a therapeutic target in selected cancers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuhong Dai ◽  
Ning Li ◽  
Ming Zhou ◽  
Yue Yuan ◽  
Ding Yue ◽  
...  

AbstractThe treatment of patients with advanced-stage osteosarcoma represents a major challenge, with very few treatments currently approved. Although accumulating evidence has demonstrated the importance of lncRNAs in osteosarcoma, the current knowledge on the functional roles and molecular mechanisms of lncRNA endogenous born avirus-like nucleoprotein (EBLN3P) is limited. At present, the expressions of EBLN3P and miR-224-5p in osteosarcoma tissues were quantified by reverse transcription-quantitative PCR assay, and the expression of Ras-related protein 10 (Rab10) in osteosarcoma tissues was quantified by immunohistochemistry and western-blotting. The bioinformatics prediction software ENCORI was used to predict the putative binding sites of EBLN3P, Rab10 and miR-224-5p. The regulatory role of EBLN3P or miR-224-5p on cell proliferation, migration and invasion ability were verified by Cell Counting Kit-8, wound healing and Transwell assays, respectively. The interaction among EBLN3P, miR-224-5p and Rab10 were testified by luciferase. The increased expression of EBLN3P and Rab10 and decreased expression of miR-224-5p were observed in osteosarcoma tissues and cell lines. Besides, the overexpression of EBLN3P or knockdown of miR-224-5p were revealed to promote the proliferation, migration and invasion of osteosarcoma cells. Bioinformatics analysis and luciferase assay revealed that EBLN3P could directly interacted with miR-224-5p to attenuate miR-224-5p binding to the Rab10 3′-untranslated region. Furthermore, the mechanistic investigations revealed activation of the miR-224-5p/Rab10 regulatory loop by knockdown of miR‐372-3p or overexpression of Rab10, thereby confirming the in vitro role of EBLN3P in promoting osteosarcoma cell proliferation, migration and invasion. To the best of our knowledge, the present study is the first to demonstrate that EBLN3P may act as a competitive endogenous RNA to modulate Rab10 expression by competitive sponging to miR-224-5p, leading to the regulation of osteosarcoma progression, which indicates a possible new approach to osteosarcoma diagnosis and treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuanbo Cui ◽  
Chunyan Zhang ◽  
Shanshan Ma ◽  
Fangxia Guan

Abstract Long non-coding RNAs (lncRNAs) are involved in the occurrence and development of human cancers including lung adenocarcinoma (LUAD). SLC2A1-AS1 is a novel lncRNA that has been reported to be exceptionally expressed in several cancer types. However, the expression and role of SLC2A1-AS1 in cancer remains largely unclear. In this study, it was revealed that lncRNA SLC2A1-AS1 was notably over-expressed in LUAD and was closely correlated with patients’ overall survival (OS). Knockdown of SLC2A1-AS1 could significantly restrain cell proliferation of LUAD in vitro, while over-expression of SLC2A1-AS1 had the accelerative effect. SLC2A1-AS1 enriched in the cytoplasm of LUAD cells could directly bind to miR-508-5p and negatively regulate its level. The inhibitory effect of miR-508-5p on LUAD cell proliferation was in part abrogated by SLC2A1-AS1 manipulation. Moreover, the transcription factor activating enhancer binding protein 2 α (TFAP2A) was highly expressed in LUAD and predicted worse patients’ OS. TFAP2A could directly bind to the promoter region of SLC2A1-AS1 encoding gene and positively regulate the transcription of SLC2A1-AS1 in LUAD cells. Furthermore, TFAP2A-induced SLC2A1-AS1 promoted cell proliferation of lung squamous cell carcinoma (LUSC) and pancreatic adenocarcinoma (PAAD). Collectively, these findings suggest that TFAP2A-mediated lncRNA SLC2A1-AS1 works as an oncogene to drive cancer cell proliferation.


2021 ◽  
Author(s):  
Jiahui Wei ◽  
Yu Ding ◽  
Xinmiao Liu ◽  
Qing Liu ◽  
Yiran Lu ◽  
...  

Abstract Eupafolin is a flavonoid that can be extracted from common sage. Previous studies have reported that Eupafolin has antioxidant, anti-inflammatory and anti-tumor properties. However, no studies have investigated the role of Eupafolin in breast cancer. Herein, we investigated the effect of Eupafolin on two human breast cancer cell lines, as well as its potential mechanism of action. Next, the data showed that proliferation, migration and invasion ability of breast cancer cells that were treated with Eupafolin was significantly reduced, while the apoptosis rate was significantly increased. In addition, Eupafolin treatment caused breast cancer cell proliferation to be blocked in the S phase. Moreover, Eupafolin significantly induced autophagy in breast cancer cells, with an increase in the expression of LC3B-II/I. PI3K/AKT, MAPKs and NF-κB pathways were significantly inhibited by Eupafolin treatment. Additionally, 3-MA (a blocker of autophagosome formation) significantly reduced Eupafolin-induced activation of LC3B-II/I in breast cancer cells. Furthermore, Eupafolin displayed good in vitro anti-angiogenic activity. Additionally, anti-breast cancer activity of Eupafolin was found to be partially mediated by Cav-1. Moreover, Eupafolin treatment significantly weakened carcinogenesis of MCF-7 cells in nude mice. Therefore, this data provides novel directions on the use of Eupafolin for treatment of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document