scholarly journals Hybrid Derivative of Cathelicidin and Human Beta Defensin-2 Against Gram-Positive Bacteria: A Novel Approach for the Treatment of Bacterial Keratitis

2021 ◽  
Author(s):  
Darren Shu Jeng Ting ◽  
Eunice Tze Leng Goh ◽  
Venkatesh Mayandi ◽  
Joanna M. F. Busoy ◽  
Thet Tun Aung ◽  
...  

ABSTRACTPurposeBacterial keratitis (BK) represents the leading cause of corneal blindness worldwide. This study aimed to generate potent hybridized human-derived host defense peptides (HDPs) as novel topical antimicrobial therapy for bacterial keratitis.MethodsHybrid peptides were rationally designed through combination of functional amino acids in parent HDPs, including LL-37 and human beta-defensin (HBD)-1 to −3. Minimal inhibitory concentrations (MICs) and time-kill kinetics assay were performed to determine the concentration- and time-dependent antimicrobial activity and cytotoxicity was evaluated against human corneal epithelial cells (HCE-2) and erythrocytes. In vivo safety and efficacy of the most promising peptide was examined in the corneal wound healing and Staphylococcus aureus (ATCC SA29213) keratitis murine models, respectively.ResultsA second-generation hybrid peptide (CaD23), based on rational hybridization of the middle residues of LL-37 and C-terminal of HBD-2, demonstrated good efficacy against methicillin-sensitive and methicillin-resistant S. aureus [MIC=12.5-25.0μg/ml (5.2-10.4μM)] and S. epidermidis [MIC=3.1-12.5μg/ml (1.3-5.2μM)], and moderate efficacy against P. aeruginosa [MIC=50μg/ml (20.9μM)]. CaD23 (at 25μg/ml or 2x MIC) killed all the bacteria within 30 mins, which was 8 times faster than amikacin (25μg/ml or 20x MIC). At 200μg/ml (16x MIC), CaD23 was shown to be relatively safe against HCE-2 (<30% toxicity) and erythrocytes (<10% toxicity). Pre-clinical murine studies showed that CaD23 0.05% (500μg/ml) achieved a median reduction of S. aureus bioburden by 94% (or 1.2 log10 CFU/ml) while not impeding corneal healing.ConclusionsRational hybridization of human-derived HDPs has led to generation of a potentially efficacious and safe topical antimicrobial agent for treating Gram-positive BK.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darren Shu Jeng Ting ◽  
Eunice Tze Leng Goh ◽  
Venkatesh Mayandi ◽  
Joanna M. F. Busoy ◽  
Thet Tun Aung ◽  
...  

AbstractBacterial keratitis (BK) is a major cause of corneal blindness globally. This study aimed to develop a novel class of antimicrobial therapy, based on human-derived hybrid host defense peptides (HyHDPs), for treating BK. HyHDPs were rationally designed through combination of functional amino acids in parent HDPs, including LL-37 and human beta-defensin (HBD)-1 to -3. Minimal inhibitory concentrations (MICs) and time-kill kinetics assay were performed to determine the concentration- and time-dependent antimicrobial activity and cytotoxicity was evaluated against human corneal epithelial cells and erythrocytes. In vivo safety and efficacy of the most promising peptide was examined in the corneal wound healing and Staphylococcus aureus (ATCC SA29213) keratitis murine models, respectively. A second-generation HyHDP (CaD23), based on rational hybridization of the middle residues of LL-37 and C-terminal of HBD-2, was developed and was shown to demonstrate good efficacy against methicillin-sensitive and methicillin-resistant S. aureus [MIC = 12.5–25.0 μg/ml (5.2–10.4 μM)] and S. epidermidis [MIC = 12.5 μg/ml (5.2 μM)], and moderate efficacy against P. aeruginosa [MIC = 25-50 μg/ml (10.4–20.8 μM)]. CaD23 (at 25 μg/ml or 2× MIC) killed all the bacteria within 30 min, which was 8 times faster than amikacin (25 μg/ml or 20× MIC). After 10 consecutive passages, S. aureus (ATCC SA29213) did not develop any antimicrobial resistance (AMR) against CaD23 whereas it developed significant AMR (i.e. a 32-fold increase in MIC) against amikacin, a commonly used treatment for BK. Pre-clinical murine studies showed that CaD23 (0.5 mg/ml) achieved a median reduction of S. aureus bioburden by 94% (or 1.2 log10 CFU/ml) while not impeding corneal epithelial wound healing. In conclusion, rational hybridization of human-derived HDPs has led to generation of a potentially efficacious and safe topical antimicrobial agent for treating Gram-positive BK, with no/minimal risk of developing AMR.


2007 ◽  
Vol 51 (4) ◽  
pp. 1259-1267 ◽  
Author(s):  
Michael J. Pucci ◽  
Jijun Cheng ◽  
Steven D. Podos ◽  
Christy L. Thoma ◽  
Jane A. Thanassi ◽  
...  

ABSTRACT The activities of several tricyclic heteroaryl isothiazolones (HITZs) against an assortment of gram-positive and gram-negative clinical isolates were assessed. These compounds target bacterial DNA replication and were found to possess broad-spectrum activities especially against gram-positive strains, including antibiotic-resistant staphylococci and streptococci. These included methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-nonsusceptible staphylococci, and quinolone-resistant strains. The HITZs were more active than the comparator antimicrobials in most cases. For gram-negative bacteria, the tested compounds were less active against members of the family Enterobacteriaceae but showed exceptional potencies against Haemophilus influenzae, Moraxella catarrhalis, and Neisseria spp. Good activity against several anaerobes, as well as Legionella pneumophila and Mycoplasma pneumoniae, was also observed. Excellent bactericidal activity against staphylococci was observed in time-kill assays, with an approximately 3-log drop in the numbers of CFU/ml occurring after 4 h of exposure to compound. Postantibiotic effects (PAEs) of 2.0 and 1.7 h for methicillin-susceptible S. aureus and MRSA strains, respectively, were observed, and these were similar to those seen with moxifloxacin at 10× MIC. In vivo efficacy was demonstrated in murine infections by using sepsis and thigh infection models. The 50% protective doses were ≤1 mg/kg of body weight against S. aureus in the sepsis model, while decreases in the numbers of CFU per thigh equal to or greater than those detected in animals treated with a standard dose of vancomycin were seen in the animals with thigh infections. Pharmacokinetic analyses of treated mice indicated exposures similar to those to ciprofloxacin at equivalent dose levels. These promising initial data suggest further study on the use of the HITZs as antibacterial agents.


2010 ◽  
Vol 55 (2) ◽  
pp. 688-695 ◽  
Author(s):  
Hadar Sarig ◽  
Yair Goldfeder ◽  
Shahar Rotem ◽  
Amram Mor

ABSTRACTPrevious studies have established the potential of the oligo-acyl-lysyl (OAK) concept in generating simple chemical mimics of host defense peptides (HDPs) with improved antimicrobial properties. We investigated the antibacterial properties of such an OAK, C16(ω7)-KK-C12-Kamide, to obtain a better understanding of the complex mode(s) of action of cationic antibacterial peptides. The average MIC, determined against a multispecies panel of 50 strains, was 6 ± 5 μg/ml. However, although the OAK exerted an essentially dose-dependent bactericidal effect (time-kill curves typically exhibited 99% death within 2 h), marked differences in the killing rates occurred among inter- and intraspecies strains. Mechanistic comparison between equally sensitive and related strains revealed death of one strain to stem from the OAK's capacity to breach the cell membrane permeability barrier, whereas the death of the related strain resulted from the OAK's direct interference with DNA functionsin vivo, without detectable membrane damage. These findings therefore support the notion that the antibacterial mechanism of action of a single HDP can vary among inter- and intraspecies strains. In addition, we present data illustrating the differential effects of environmental conditions (pH, ionic strength and temperature), on the OAK's antibacterial properties, and ultimately demonstrate potency enhancement (by orders of magnitude) through selection of optimal incubation conditions. Such attributes might be useful in a variety of antibacterial applications.


2003 ◽  
Vol 47 (8) ◽  
pp. 2471-2480 ◽  
Author(s):  
Yutaka Ueda ◽  
Makoto Sunagawa

ABSTRACT SM-197436, SM-232721, and SM-232724 are new 1β-methylcarbapenems with a unique 4-substituted thiazol-2-ylthio moiety at the C-2 side chain. In agar dilution susceptibility testing these novel carbapenems were active against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE) with a MIC90 of ≤4 μg/ml. Furthermore, SM-232724 showed strong bactericidal activity against MRSA, in contrast to linezolid, which was bacteriostatic up to four times the MIC. SM-232724 showed good therapeutic efficacy comparable to those of vancomycin and linezolid against systemic infections of MRSA in cyclophosphamide-treated mice. The MICs of SM-197436, SM-232721, and SM-232724 for streptococci, including penicillin-intermediate and penicillin-resistant Streptococcus pneumoniae strains, ranged from ≤0.063 to 0.5 μg/ml. These drugs were the most active β-lactams tested against Enterococcus faecium, and the MIC90 s for ampicillin-resistant E. faecium ranged between 8 and 16 μg/ml, which were slightly higher than the value for linezolid. However, time-kill assays revealed the superior bactericidal activity of SM-232724 compared to those of quinupristin-dalfopristin and linezolid against an E. faecium strain with a 4-log reduction in CFU at four times the MIC after 24 h of exposure to antibiotics. In addition, SM-232724 significantly reduced the numbers of bacteria in a murine abscess model with the E. faecium strain: its efficacy was superior to that of linezolid, although the MICs (2 μg/ml) of these two agents are the same. Among gram-negative bacteria, these three carbapenems were highly active against Haemophilus influenzae (including ampicillin-resistant strains), Moraxella catarrhalis, and Bacteroides fragilis, and showed antibacterial activity equivalent to that of imipenem for Escherichia coli, Klebsiella pneumoniae, and Proteus spp. Thus, these new carbapenems are promising candidates for agents to treat nosocomial bacterial infections by gram-positive and gram-negative bacteria, especially multiresistant gram-positive cocci, including MRSA and vancomycin-resistant enterococci.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Hongmin Zhang ◽  
Susu Liu ◽  
Juan Yue ◽  
Shengtao Sun ◽  
Qixue Lv ◽  
...  

ABSTRACT Bacterial keratitis is an aggressive infectious corneal disease. With the continuing rise in antibiotic resistance and a decline in the discovery of new antibiotics, new antimicrobial drugs are now required. In the present study, we determined the antibacterial activity of diacerein, an anti-inflammatory drug, against 76 Gram-positive cocci isolated from bacterial keratitis patients in vitro and anti-Staphylococcus aureus activity in a mouse bacterial keratitis model in vivo. The MICs of diacerein were tested using the broth microdilution method in vitro. A BALB/c Staphylococcus aureus keratitis animal model was selected and the corneal clinical observation, viable bacteria, and hematoxylin-eosin and Gram staining of infected corneas were measured to evaluate the antibacterial efficacy of diacerein eye drops in vivo. An in vivo eye irritation study was carried out by a modified Draize test in rabbits. Our in vitro results showed that diacerein possesses satisfactory antibacterial activity against the majority of Gram-positive cocci (60/76), including all 57 tested Staphylococcus spp. and 3 Enterococcus spp. The in vivo experiment showed that diacerein eye drops reduced bacterial load and improved ocular clinical scores after topical administration of diacerein drops on infected corneas. The ocular irritation test revealed that diacerein eye drop had excellent ocular tolerance. These results indicated that diacerein possesses in vivo anti-Staphylococcus aureus activity. We suggest that diacerein is a possible topically administered drug for Staphylococcus aureus-infected patients, especially those with ocular surface inflammatory disorders.


2017 ◽  
Vol 3 (2) ◽  
pp. 711-715
Author(s):  
Michael de Wild ◽  
Simon Zimmermann ◽  
Marcel Obrecht ◽  
Michel Dard

AbstractThin mechanically stable Ti-cages have been developed for the in-vivo application as X-ray and histology markers for the optimized evaluation of pre-clinical performance of bone graft materials. A metallic frame defines the region of interest during histological investigations and supports the identification of the defect site. This standardization of the procedure enhances the quality of pre-clinical experiments. Different models of thin metallic frameworks were designed and produced out of titanium by additive manufacturing (Selective Laser Melting). The productibility, the mechanical stability, the handling and suitability of several frame geometries were tested during surgery in artificial and in ex-vivo bone before a series of cages was preclinically investigated in the female Göttingen minipigs model. With our novel approach, a flexible process was established that can be adapted to the requirements of any specific animal model and bone graft testing.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 314 ◽  
Author(s):  
Tânia D. Tavares ◽  
Joana C. Antunes ◽  
Jorge Padrão ◽  
Ana I. Ribeiro ◽  
Andrea Zille ◽  
...  

The increased resistance of bacteria against conventional pharmaceutical solutions, the antibiotics, has raised serious health concerns. This has stimulated interest in the development of bio-based therapeutics with limited resistance, namely, essential oils (EOs) or antimicrobial peptides (AMPs). This study envisaged the evaluation of the antimicrobial efficacy of selected biomolecules, namely LL37, pexiganan, tea tree oil (TTO), cinnamon leaf oil (CLO) and niaouli oil (NO), against four bacteria commonly associated to nosocomial infections: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. The antibiotic vancomycin and silver nanoparticles (AgNPs) were used as control compounds for comparison purposes. The biomolecules were initially screened for their antibacterial efficacy using the agar-diffusion test, followed by the determination of minimal inhibitory concentrations (MICs), kill-time kinetics and the evaluation of the cell morphology upon 24 h exposure. All agents were effective against the selected bacteria. Interestingly, the AgNPs required a higher concentration (4000–1250 μg/mL) to induce the same effects as the AMPs (500–7.8 μg/mL) or EOs (365.2–19.7 μg/mL). Pexiganan and CLO were the most effective biomolecules, requiring lower concentrations to kill both Gram-positive and Gram-negative bacteria (62.5–7.8 μg/mL and 39.3–19.7 μg/mL, respectively), within a short period of time (averaging 2 h 15 min for all bacteria). Most biomolecules apparently disrupted the bacteria membrane stability due to the observed cell morphology deformation and by effecting on the intracellular space. AMPs were observed to induce morphological deformations and cellular content release, while EOs were seen to split and completely envelope bacteria. Data unraveled more of the potential of these new biomolecules as replacements for the conventional antibiotics and allowed us to take a step forward in the understanding of their mechanisms of action against infection-related bacteria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pedro Seguí ◽  
John J. Aguilera-Correa ◽  
Elena Domínguez-Jurado ◽  
Christian M. Sánchez-López ◽  
Ramón Pérez-Tanoira ◽  
...  

AbstractThis study was designed to propose alternative therapeutic compounds to fight against bacterial pathogens. Thus, a library of nitrogen-based compounds bis(triazolyl)methane (1T–7T) and bis(pyrazolyl)methane (1P–11P) was synthesised following previously reported methodologies and their antibacterial activity was tested using the collection strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Moreover, the novel compound 2P was fully characterized by IR, UV–Vis and NMR spectroscopy. To evaluate antibacterial activity, minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) assays were carried out at different concentrations (2–2000 µg/mL). The MTT assay and Resazurin viability assays were performed in both human liver carcinoma HepG2 and human colorectal adenocarcinoma Caco-2 cell lines at 48 h. Of all the synthesised compounds, 2P had an inhibitory effect on Gram-positive strains, especially against S. aureus. The MIC and MBC of 2P were 62.5 and 2000 µg/mL against S. aureus, and 250 and 2000 µg/mL against E. faecalis, respectively. However, these values were > 2000 µg/mL against E. coli and P. aeruginosa. In addition, the MBICs and MBECs of 2P against S. aureus were 125 and > 2000 µg/mL, respectively, whereas these values were > 2000 µg/mL against E. faecalis, E. coli, and P. aeruginosa. On the other hand, concentrations up to 250 µg/mL of 2P were non-toxic doses for eukaryotic cell cultures. Thus, according to the obtained results, the 2P nitrogen-based compound showed a promising anti-Gram-positive effect (especially against S. aureus) both on planktonic state and biofilm, at non-toxic concentrations.


2021 ◽  
Vol 7 (2) ◽  
pp. 113
Author(s):  
Anne-Laure Bidaud ◽  
Patrick Schwarz ◽  
Guillaume Herbreteau ◽  
Eric Dannaoui

Systemic fungal infections are associated with high mortality rates despite adequate treatment. Moreover, acquired resistance to antifungals is increasing, which further complicates the therapeutic management. One strategy to overcome antifungal resistance is to use antifungal combinations. In vitro, several techniques are used to assess drug interactions, such as the broth microdilution checkerboard, agar-diffusion methods, and time-kill curves. Currently, the most widely used technique is the checkerboard method. The aim of all these techniques is to determine if the interaction between antifungal agents is synergistic, indifferent, or antagonistic. However, the interpretation of the results remains difficult. Several methods of analysis can be used, based on different theories. The most commonly used method is the calculation of the fractional inhibitory concentration index. Determination of the usefulness of combination treatments in patients needs well-conducted clinical trials, which are difficult. It is therefore important to study antifungal combinations in vivo, in experimental animal models of fungal infections. Although mammalian models have mostly been used, new alternative animal models in invertebrates look promising. To evaluate the antifungal efficacy, the most commonly used criteria are the mortality rate and the fungal load in the target organs.


Sign in / Sign up

Export Citation Format

Share Document