scholarly journals Therapeutic reversal of prenatal pontine ID1 signaling in DIPG

2021 ◽  
Author(s):  
Viveka Nand Yadav ◽  
Micah K. Harris ◽  
Dana Messinger ◽  
Chase Thomas ◽  
Jessica R. Cummings ◽  
...  

Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive brain tumor with rare survival beyond two years. This poor prognosis is largely due to the tumor's highly infiltrative and invasive nature. Previous reports demonstrate upregulation of the transcription factor ID1 with H3K27M and ACVR1 mutations, but this has not been confirmed in human tumors or therapeutically targeted. We developed an in utero electroporation (IUE) murine H3K27M-driven tumor model, which demonstrates increased ID1 expression in H3K27M- and ACVR1-mutated tumor cells. In human tumors, elevated ID1 expression is associated with H3K27M/ACVR1-mutation, brainstem location, and reduced survival. The ID1 promoter demonstrates a similar active epigenetic state in H3K27M tumor cells and murine prenatal hindbrain cells. In the developing human brain, ID1 is expressed highest in oligo/astrocyte-precursor cells (OAPCs). These ID1+/SPARCL1+ cells share a transcriptional program with astrocyte-like (AC-like) DIPG cells, and demonstrate upregulation of gene sets involved with regulation of cell migration. Both genetic and pharmacologic [cannabidiol (CBD)] suppression of ID1 results in decreased DIPG cell invasion/migration in vitro and invasion/tumor growth in multiple in vivo models. CBD reduces proliferation through reactive oxygen species (ROS) production at low micromolar concentrations, which we found to be achievable in the murine brainstem. Further, pediatric high-grade glioma patients treated off-trial with CBD (n=15) demonstrate tumor ID1 reduction and improved overall survival compared to historical controls. Our study identifies that ID1 is upregulated in DIPG through reactivation of a developmental OAPC transcriptional state, and ID1-driven invasiveness of DIPG is therapeutically targetable with CBD.

2019 ◽  
Vol 18 ◽  
pp. 153473541984804 ◽  
Author(s):  
Paola Lasso ◽  
Mónica Llano Murcia ◽  
Tito Alejandro Sandoval ◽  
Claudia Urueña ◽  
Alfonso Barreto ◽  
...  

Background: The tumor cells responsible for metastasis are highly resistant to chemotherapy and have characteristics of stem cells, with a high capacity for self-regeneration and the use of detoxifying mechanisms that participate in drug resistance. In vivo models of highly resistant cells allow us to evaluate the real impact of the immune response in the control of cancer. Materials and Methods: A tumor population derived from the 4T1 breast cancer cell line that was stable in vitro and highly aggressive in vivo was obtained, characterized, and determined to exhibit cancer stem cell (CSC) phenotypes (CD44+, CD24+, ALDH+, Oct4+, Nanog+, Sox2+, and high self-renewal capacity). Orthotopic transplantation of these cells allowed us to evaluate their in vivo susceptibility to chemo and immune responses induced after vaccination. Results: The immune response induced after vaccination with tumor cells treated with doxorubicin decreased the formation of tumors and macrometastasis in this model, which allowed us to confirm the immune response relevance in the control of highly chemotherapy-resistant ALDH+ CSCs in an aggressive tumor model in immunocompetent animals. Conclusions: The antitumor immune response was the main element capable of controlling tumor progression as well as metastasis in a highly chemotherapy-resistant aggressive breast cancer model.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e13508-e13508
Author(s):  
Zachary Miklja ◽  
Brendan Mullan ◽  
Ruby Siada ◽  
Stefanie Stallard ◽  
Viveka Nand Yadav ◽  
...  

e13508 Background: Pediatric and adult high-grade glioma (HGG) frequently harbor PDGFRA alterations. The CNS penetration of PDGFRA inhibitors, such as dasatinib, is limited by the tumor-efflux protein P-glycoprotein (P-gp). We hypothesized that co-treatment with everolimus, which has been shown to block P-gp, will increase CNS penetration and efficacy of dasatinib in in vitro and in vivo models as well as in human PDGFRA-driven glioma. Methods: Tumors were generated in mice using an intra-uterine electroporation (IUE) model [introduction of TP53, PDGFRA and H3K27M mutations in pre-natal cortex]. Dose response, synergism studies, P-GP inhibition and pharmacodynamics/pharmacokinetic studies were then performed on in vitro and in vivo models employing this IUE system. A phase 2 trial employing dasatinib and everolimus was established for children with HGG and diffuse intrinsic pontine glioma (DIPG) that contain PDGFRA alterations (NCT03352427). Paired CSF/plasma samples (before and after addition of everolimus) were collected from enrolled patients. Results: Dasatinib effectively treated mouse HGG cells with an IC50 of 100 nM. Dose-dependent reduction in PDGFRA and pPDGFRA was found. P-gp inhibitor assay confirmed that everolimus strongly blocks P-gp activity at 1 uM (p = 0.0028 vs untreated). Mice treated with dasatinib and everolimus had extended survival as compared to control. Two-hour exposure to everolimus resulted in sub-IC50 dasatinib concentration in cortex (23 nM) and tumor (65 nM). 24-hour exposure to everolimus resulted in greater cortex (235 nM) and tumor (509 nM) concentrations. Two trial patients, recurrent HGG ( PDGFRA-amplified) and recurrent DIPG ( PDGFRA D842V) respectively, survived 6 months and 9 months (ongoing) after progression, which compares very favorably to historical controls. A paired CSF sample from the PDGFRA-amplified patient showed a 50% increase in CSF dasatinib level after addition of everolimus. Conclusions: Dasatinib treatment of PDGFRA-driven HGG is improved with everolimus blockade of P-gp and represents a novel route for improving CNS penetration and efficacy of therapies for HGG. Clinical trial information: NCT03352427.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi215-vi215
Author(s):  
Viveka Nand Yadav ◽  
Micah K Harris ◽  
Dana Messinger ◽  
Chase Thomas ◽  
Jessica R Cummings ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor with rare survival beyond two years. This poor prognosis is largely due to the tumor's highly infiltrative and invasive nature. Nearly 80% of DMGs harbor K27M mutation in the genes encoding histone H3.1 (H3F3A) or H3.3 (HISTIH3B), often with concurrent ACVR1 mutation. Inhibitor of DNA-binding (ID) proteins are key transcriptional regulators of genes involved in lineage commitment and are associated with invasiveness and poor clinical outcomes in multiple human cancers. Introduction of H3K27M and ACVR1 mutations increase ID1 expression in cultured astrocytes, but this has not been confirmed in human tumors or targeted therapeutically. We developed an in-utero electroporation (IUE) murine H3K27M-driven tumor model, which demonstrates increased ID1 expression in H3K27M- and ACVR1-mutated tumor cells. Exome and transcriptome sequencing analysis of multi-focal DMG tumors (n=52) and normal brain tissue revealed that increased ID1 expression is associated with H3K27M/ACVR1-mutation and brainstem location, and correlates with poor survival in patients. ChIP-sequencing for H3K27ac and H3K27me3 in multiple DMG tumors (n=5) revealed that the ID1 gene is epigenetically active, which matches the epigenetic state of murine prenatal hindbrain cells. Higher ID1-expressing astrocyte-like DIPG cells share a similar transcriptional program with ID1+/SPARCL1+ positive oligo/astrocyte-precursor (OAPC) cells from the developing human brain and demonstrate upregulation of gene sets involved in regulation of cell migration. Both genetic and pharmacologic [cannabidiol (CBD)] suppression of ID1 result in decreased DIPG cell invasion/migration in vitro and invasion/tumor growth in multiple in vivo models. Mechanistically, CBD reduces proliferation through production of reactive oxygen species. Further, DIPG patients treated off-trial with CBD (n=15) displayed reduced ID1 tumor expression and improved overall survival. In summary, ID1 is upregulated in DIPG through K27M-mediated epigenetic reactivation of a developmental OAPC-like transcriptional state, and ID1-driven invasiveness of DIPG is therapeutically targetable with CBD.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dilakshan Srikanthan ◽  
Michael S. Taccone ◽  
Randy Van Ommeren ◽  
Joji Ishida ◽  
Stacey L. Krumholtz ◽  
...  

AbstractDiffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor and the leading cause of brain tumor–related death in children. As several clinical trials over the past few decades have led to no significant improvements in outcome, the current standard of care remains fractionated focal radiation. Due to the recent increase in stereotactic biopsies, tumor tissue availabilities have enabled our advancement of the genomic and molecular characterization of this lethal cancer. Several groups have identified key histone gene mutations, genetic drivers, and methylation changes in DIPG, providing us with new insights into DIPG tumorigenesis. Subsequently, there has been increased development of in vitro and in vivo models of DIPG which have the capacity to unveil novel therapies and strategies for drug delivery. This review outlines the clinical characteristics, genetic landscape, models, and current treatments and hopes to shed light on novel therapeutic avenues and challenges that remain.


2005 ◽  
Vol 13 (6) ◽  
pp. 337-343 ◽  
Author(s):  
Bhawna Gupta ◽  
Tatiana S. Levchenko ◽  
Dmitry A. Mongayt ◽  
Vladimir P. Torchilin

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1572 ◽  
Author(s):  
Daniel Salas-Treviño ◽  
Odila Saucedo-Cárdenas ◽  
María de Jesús Loera-Arias ◽  
Humberto Rodríguez-Rocha ◽  
Aracely García-García ◽  
...  

Carbon nanotubes (CNTs) have emerged in recent years as a potential option for drug delivery, due to their high functionalization capacity. Biocompatibility and selectivity using tissue-specific biomolecules can optimize the specificity, pharmacokinetics and stability of the drug. In this study, we design, develop and characterize a drug nanovector (oxCNTs-HA-CPT) conjugating oxidated multi-wall carbon nanotubes (oxCNTs) with hyaluronate (HA) and carboplatin (CPT) as a treatment in a lung cancer model in vitro. Subsequently, we exposed TC–1 and NIH/3T3 cell lines to the nanovectors and measured cell uptake, cell viability, and oxidative stress induction. The characterization of oxCNTs-HA-CPT reveals that on their surface, they have HA. On the other hand, oxCNTs-HA-CPT were endocytosed in greater proportion by tumor cells than by fibroblasts, and likewise, the cytotoxic effect was significantly higher in tumor cells. These results show the therapeutic potential that nanovectors possess; however, future studies should be carried out to determine the death pathways involved, as well as their effect on in vivo models.


2016 ◽  
Vol 62 (2) ◽  
pp. 328-334 ◽  
Author(s):  
Klaus Pantel ◽  
Catherine Alix-Panabières

AbstractBACKGROUNDResearch on circulating tumor cells (CTCs) as new biomarkers has received great attention over the past decade. In particular, the capture and analysis of CTCs as “liquid biopsies” provides the possibility to avoid invasive tissue biopsies, with obvious implications in cancer diagnostics.CONTENTThe focus of this review is to describe and discuss how functional studies on viable CTCs can enlarge the spectrum of applications of liquid biopsies, with emphasis on breast, prostate, colon, and lung cancer as the major tumor entities in industrialized countries. The low number of CTCs in the peripheral blood of most cancer patients makes challenging the in vitro culture of CTCs. Epithelial tumor cells are difficult to culture, even when starting with millions of tumor cells. Recently, several groups have achieved important advances in the in vitro and in vivo expansion of CTCs from cancer patients at very advanced stages with higher amounts of CTCs. Here, we present current technologies to enrich and detect viable human CTCs, including positive and negative enrichment strategies that are based on antigen expression and physical properties of CTCs. We also discuss published data about functional studies on CTCs that use in vitro and in vivo models.SUMMARYFunctional analyses on CTCs offer the possibility to identify the biological properties of metastatic cells, including the identification of metastasis-initiating cells. Moreover, CTC-derived cell lines and xenografts might reveal new therapeutic targets and can be used for drug screening.


2021 ◽  
Vol 22 (17) ◽  
pp. 9279
Author(s):  
Inés Martínez-Pena ◽  
Pablo Hurtado ◽  
Nuria Carmona-Ule ◽  
Carmen Abuín ◽  
Ana Belén Dávila-Ibáñez ◽  
...  

Background: Cancer metastasis is a deathly process, and a better understanding of the different steps is needed. The shedding of circulating tumor cells (CTCs) and CTC-cluster from the primary tumor, its survival in circulation, and homing are key events of the metastasis cascade. In vitro models of CTCs and in vivo models of metastasis represent an excellent opportunity to delve into the behavior of metastatic cells, to gain understanding on how secondary tumors appear. Methods: Using the zebrafish embryo, in combination with the mouse and in vitro assays, as an in vivo model of the spatiotemporal development of metastases, we study the metastatic competency of breast cancer CTCs and CTC-clusters and the molecular mechanisms. Results: CTC-clusters disseminated at a lower frequency than single CTCs in the zebrafish and showed a reduced capacity to invade. A temporal follow-up of the behavior of disseminated CTCs showed a higher survival and proliferation capacity of CTC-clusters, supported by their increased resistance to fluid shear stress. These data were corroborated in mouse studies. In addition, a differential gene signature was observed, with CTC-clusters upregulating cell cycle and stemness related genes. Conclusions: The zebrafish embryo is a valuable model system to understand the biology of breast cancer CTCs and CTC-clusters.


2017 ◽  
Author(s):  
Barbara Oldrini ◽  
Álvaro Curiel-García ◽  
Carolina Marques ◽  
Veronica Matia ◽  
Özge Uluçkan ◽  
...  

AbstractIt has been gradually established that the vast majority of human tumors are extraordinarily heterogeneous at a genetic level. To accurately recapitulate this complexity, it is now evident that in vivo animal models of cancers will require to recreate not just a handful of simple genetic alterations, but possibly dozens and increasingly intricate. Here, we have combined the RCAS/TVA system with the CRISPR/Cas9 genome editing tools for precise modeling of human tumors. We show that somatic deletion in neural stem cells (NSCs) of a variety of known tumor suppressor genes (Trp53, Cdkn2a and Pten), in combination with the expression of an oncogene driver, leads to high-grade glioma formation. Moreover, by simultaneous delivery of pairs of guide RNAs (gRNAs) we generated different gene fusions, either by chromosomal deletion (Bcan-Ntrk1) or by chromosomal translocation (Myb-Qk), and we show that they have transforming potential in vitro and in vivo. Lastly, using homology-directed-repair (HDR), we also produced tumors carrying the Braf V600E mutation, frequently identified in a variety of subtypes of gliomas. In summary, we have developed an extremely powerful and versatile mouse model for in vivo somatic genome editing, that will elicit the generation of more accurate cancer models particularly appropriate for pre-clinical testing.


Sign in / Sign up

Export Citation Format

Share Document