scholarly journals Intravital imaging of Candida albicans identifies differential in vitro and in vivo filamentation phenotypes for transcription factor deletion mutants

2021 ◽  
Author(s):  
Damian J Krysan ◽  
Rohan S Wakade ◽  
manning huang ◽  
Aaron P Mitchell ◽  
Melanie Wellington

Candida albicans is an important cause of human fungal infections. A widely studied virulence trait of C. albicans is its ability to undergo filamentation to hyphae and pseudohyphae. Although yeast, pseudohyphae and hyphae are present in pathological samples of infected mammalian tissue, it has been challenging to characterize the role of regulatory networks and specific genes during in vivo filamentation. In addition, the phenotypic heterogeneity of C. albicans clinical isolates is becoming increasingly recognized and correlating this heterogeneity with pathogenesis remains an important goal. Here, we describe the use of an intravital imaging approach to characterize C. albicans filamentation in a mammalian model of infection by taking advantage of the translucence of mouse pinna (ears). Using this model, we have found that the in vitro and in vivo filamentation phenotypes of different C. albicans isolates can vary significantly, particularly when in vivo filamentation is compared to solid agar-based assays. We also show that the well-characterized transcriptional regulators Efg1 and Brg1 appear to play important roles both in vivo and in vitro. In contrast, Ume6 is much more important in vitro than in vivo. Finally, strains that are dependent on Bcr1 for in vitro filamentation are able to form filaments in vivo. This intravital imaging approach provides a new approach to the systematic characterization of this important virulence trait during mammalian infection. Our initial studies provide support for the notion that the regulation and initiation of C. albicans filamentation in vivo is distinct from in vitro induction.

2007 ◽  
Vol 6 (6) ◽  
pp. 931-939 ◽  
Author(s):  
Fang Li ◽  
Michael J. Svarovsky ◽  
Amy J. Karlsson ◽  
Joel P. Wagner ◽  
Karen Marchillo ◽  
...  

ABSTRACT Candida albicans is the leading cause of systemic fungal infections in immunocompromised humans. The ability to form biofilms on surfaces in the host or on implanted medical devices enhances C. albicans virulence, leading to antimicrobial resistance and providing a reservoir for infection. Biofilm formation is a complex multicellular process consisting of cell adhesion, cell growth, morphogenic switching between yeast form and filamentous states, and quorum sensing. Here we describe the role of the C. albicans EAP1 gene, which encodes a glycosylphosphatidylinositol-anchored, glucan-cross-linked cell wall protein, in adhesion and biofilm formation in vitro and in vivo. Deleting EAP1 reduced cell adhesion to polystyrene and epithelial cells in a gene dosage-dependent manner. Furthermore, EAP1 expression was required for C. albicans biofilm formation in an in vitro parallel plate flow chamber model and in an in vivo rat central venous catheter model. EAP1 expression was upregulated in biofilm-associated cells in vitro and in vivo. Our results illustrate an association between Eap1p-mediated adhesion and biofilm formation in vitro and in vivo.


mSphere ◽  
2021 ◽  
Author(s):  
Rohan S. Wakade ◽  
Manning Huang ◽  
Aaron P. Mitchell ◽  
Melanie Wellington ◽  
Damian J. Krysan

Candida albicans is one of the most common causes of fungal infections in humans. C. albicans undergoes a transition from a round yeast form to a filamentous form during infection, which is critical for its ability to cause disease. Although this transition has been studied in the laboratory for years, methods to do so in an animal model of infection have been limited.


Author(s):  
Yishan Zhang ◽  
Chuanyan Tang ◽  
Zhanpeng Zhang ◽  
Shuixiu Li ◽  
Yajing Zhao ◽  
...  

Macrophages provide the first-line defense against invasive fungal infections and, therefore, escape from macrophage becomes the basis for the establishment of Candida albicans invasive infection. Here, we found that deletion of ATP2 (atp2Δ/Δ) in C. albicans resulted in a dramatic decrease from 69.2% (WT) to 1.2% in the escape rate in vitro. The effect of ATP2 on macrophage clearance stands out among the genes currently known to affect clearance. In the normal mice, the atp2Δ/Δ cells were undetectable in major organs 72 h after systemic infection, while WT cells persisted in vivo. However, in the macrophage-depleted mice, atp2Δ/Δ could persist for 72 h at an amount comparable to that at 24 h. Regarding the mechanism, WT cells sustained growth and switched to hyphal form, which was more conducive to escape from macrophages, in media that mimic the glucose-deficient environment in macrophages. In contrast, atp2Δ/Δ cells can remained viable but were unable to complete morphogenesis in these media, resulting in them being trapped within macrophages in the yeast form. Meanwhile, atp2Δ/Δ cells were killed by oxidative stress in alternative carbon sources by 2- to 3-fold more than WT cells. Taken together, ATP2 deletion prevents C. albicans from escaping macrophage clearance, and therefore ATP2 has a functional basis as a drug target that interferes with macrophage clearance.


2020 ◽  
Author(s):  
Yajing Zhao ◽  
Yan Lyu ◽  
Yanli Zhang ◽  
Shuixiu Li ◽  
Yishan Zhang ◽  
...  

Abstract Invasive fungal infections are a major cause of human mortality due in part to a very limited antifungal drug arsenal. The identification of fungal-specific pathogenic mechanisms is considered a crucial step to current antifungal drug development and represents a significant goal to increase the efficacy and reduce host toxicity. Although the overall architecture of F1FO-ATP synthase is largely conserved in both fungi and mammals, the subunit i/j (Su i/j, Atp18) and subunit k (Su k, Atp19) are proteins not found in mammals and specific to fungi. Here, the role of Su i/j and Su k in Candida albicans was characterized by an in vivo assessment of the virulence and in vitro growth and mitochondrial function. Strikingly, the atp18Δ/Δ mutant showed significantly reduced pathogenicity in systemic murine model. However, this substantial defect in infectivity exists without associated defects in mitochondrial oxidative phosphorylation or proliferation in vitro. Analysis of virulence-related traits reveals normal in both mutants, but shows cell wall defects in composition and architecture in the case of atp18Δ/Δ. We also find that the atp18Δ/Δ mutant is more susceptible to attack by macrophages than wild type, which may correlate well with the abnormal cell wall function and increased sensitivity to oxidative stress. In contrast, no significant changes were observed in any of these studies for the atp19Δ/Δ. These results demonstrate that the fungal-specific Su i/j, but not Su k of F1FO-ATP synthase may play a critical role in C. albicans infectivity and represent another opportunity for new therapeutic target investigation. Lay Abstract This study aims to investigate biological functions of fungal-specific subunit i/j and subunit k of ATP synthase in C. albicans oxidative phosphorylation and virulence potential. Our results revealed that subunit i/j, and not subunit k, is critical for C. albicans pathogenicity.


2015 ◽  
Vol 14 (8) ◽  
pp. 834-844 ◽  
Author(s):  
Ranjith Rajendran ◽  
Elisa Borghi ◽  
Monica Falleni ◽  
Federica Perdoni ◽  
Delfina Tosi ◽  
...  

ABSTRACT Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo . In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.


1996 ◽  
Vol 40 (11) ◽  
pp. 2511-2516 ◽  
Author(s):  
J A Vazquez ◽  
M T Arganoza ◽  
J K Vaishampayan ◽  
R A Akins

The use of azole prophylaxis as a measure to prevent invasive fungal infections in high-risk patients is increasing and is now the standard of care in many institutions. Previous studies disagree on whether preexposure of Candida albicans to azoles affects their subsequent susceptibility to amphotericin B (AmB). The present in vitro study indicates that azole exposure generates a subpopulation of cells that are not affected by subsequent exposure to AmB. These cells that are phenotypically resistant to AmB tolerated by most cells not exposed to azole. The percentage of cells that convert to phenotypic resistance to AmB varies with the concentration and the azole. Itraconazole is more effective than fluconazole in generating cells that are phenotypically resistant to AmB and that tolerate an otherwise lethal transient exposure to AmB. Until cells that are not exposed to fluconazole are simultaneously challenged with AmB, they are not protected to a significant extent from killing by AmB. Cells that are challenged with continuous exposure to AmB also acquire phenotypic resistance to AmB at increased frequencies by azole preexposure, but this requires that the azole be continuously present during incubation with AmB. In addition, Candida cells taken from mature colonies that are not actively growing are not susceptible to the short-term killing effects of AmB without azole preexposure. The adaptive responses of C. albicans to AmB and potentially other antifungal agents that may result from prior exposure to azoles in vitro or potentially in microenvironments in vivo that induce physiological changes may have major clinical implications.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5815
Author(s):  
Lady Daiane Pereira Leite ◽  
Maria Alcionéia Carvalho de Oliveira ◽  
Mariana Raquel da Cruz Vegian ◽  
Aline da Graça Sampaio ◽  
Thalita Mayumi Castaldelli Nishime ◽  
...  

The increasing incidence of antifungal resistance represents a great challenge in the medical area and, for this reason, new therapeutic alternatives for the treatment of fungal infections are urgently required. Cold atmospheric plasma (CAP) has been proposed as a promising alternative technique for the treatment of superficial candidiasis, with inhibitory effect both in vitro and in vivo. However, little is known on the association of CAP with conventional antifungals. The aim of this study was to evaluate the effects of the association between CAP and conventional polyene antifungals on Candida albicans biofilms. C. albicans SC 5314 and a clinical isolate were used to grow 24 or 48 h biofilms, under standardized conditions. After that, the biofilms were exposed to nystatin, amphotericin B and CAP, separately or in combination. Different concentrations of the antifungals and sequences of treatment were evaluated to establish the most effective protocol. Biofilms viability after the treatments was compared to negative control. Data were compared by One-way ANOVA and post hoc Tukey (5%). The results demonstrate that 5 min exposure to CAP showed more effective antifungal effect on biofilms when compared to nystatin and amphotericin B. Additionally, it was detected that CAP showed similar (but smaller in magnitude) effects when applied in association with nystatin and amphotericin B at 40 µg/mL and 60 µg/mL. Therefore, it can be concluded that the application of CAP alone was more effective against C. albicans biofilms than in combination with conventional polyene antifungal agents.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


Sign in / Sign up

Export Citation Format

Share Document