scholarly journals Molecular basis for PICS-mediated piRNA biogenesis and cell division

2021 ◽  
Author(s):  
Xiaoyang Wang ◽  
Chenming Zeng ◽  
Shanhui Liao ◽  
Zhongliang Zhu ◽  
Jiahai Zhang ◽  
...  

By incorporating two mutually exclusive factors, PID-1 and TOST-1, C. elegans PICS complex plays important roles in piRNA biogenesis, chromosome segregation and cell division, respectively. We firstly mapped the interaction network between PICS subunits. By solving the several complex structures, including those of TOFU-6/PICS-1, ERH-2/PICS-1, and ERH-2/TOST-1, we uncover the mechanisms underlying the interactions between PICS subunits. Our biochemical experiment demonstrates that PICS exists as an octamer consisting of two copies of each subunits. Combining structural analyses with mutagenesis experiments, we identified residues of PICS subunits that are critical for maintaining intact PICS complex in vitro. Furthermore, using genetics, cell biology and imaging experiments, we found that those mutants impairing the in vitro interaction network within PICS, also lead to abnormal dysfunction PICS in vivo, including mislocalization of PICS, and reduced levels of piRNAs or abnormal chromosome segregation and cell division. Therefore, our work provides structural insights into understanding the PICS-mediated piRNA biogenesis and cell division.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyang Wang ◽  
Chenming Zeng ◽  
Shanhui Liao ◽  
Zhongliang Zhu ◽  
Jiahai Zhang ◽  
...  

AbstractBy incorporating two mutually exclusive factors, PID-1 and TOST-1, C. elegans PICS complex plays important roles in piRNA biogenesis, chromosome segregation and cell division. We firstly map the interaction network between PICS subunits, then uncover the mechanisms underlying the interactions between PICS subunits by solving several complex structures, including those of TOFU-6/PICS-1, ERH-2/PICS-1, and ERH-2/TOST-1. Our biochemical experiment also demonstrates that PICS exists as an octamer consisting of two copies of each subunit. Combining structural analyses with mutagenesis experiments, we identify interfacial residues of PICS subunits that are critical for maintaining intact PICS complex in vitro. Furthermore, using genetics, cell biology and imaging experiments, we find that those mutants impairing the in vitro interaction network within PICS, also lead to dysfunction of PICS in vivo, including mislocalization of PICS, and reduced levels of piRNAs or aberrant chromosome segregation and cell division. Therefore, our work provides structural insights into understanding the PICS-mediated piRNA biogenesis and cell division.


2019 ◽  
Author(s):  
Nils Y. Meiresonne ◽  
Tanneke den Blaauwen

AbstractBacterial cell division is guided by FtsZ treadmilling precisely at midcell. FtsZ itself is regulated by FtsZ associated proteins (Zaps) that couple it to different cellular processes. ZapA is known to enhance FtsZ bundling but also forms the synchronizing link with chromosome segregation through ZapB and matS bound MatP. ZapA exists as dimers and tetramers in the cell. Using the ZapAI83E mutant that only forms dimers, this paper investigates the effects of ZapA multimerization state on its interaction partners and cell division. By employing (fluorescence) microscopy and Förster Resonance Energy Transfer in vivo it is shown that; dimeric ZapA is unable to complement a zapA deletion strain and localizes diffusely through the cell but still interacts with FtsZ that is not part of the cell division machinery. Dimeric ZapA is unable to recruit ZapB, which localizes in its presence unipolarly in the cell. Interestingly, the localization profiles of the chromosome and unipolar ZapB anticorrelate. The work presented here confirms previously reported in vitro effects of ZapA multimerization in vivo and further places it in a broader context by revealing the strong implications for ZapB localization and ter linkage.


Author(s):  
David Sebastian Jimenez ◽  
Jun Kim ◽  
Bhavana Ragipani ◽  
Bo Zhang ◽  
Lena Annika Street ◽  
...  

AbstractCondensins are molecular motors that compact DNA for chromosome segregation and gene regulation. In vitro experiments have begun to elucidate the mechanics of condensin function but how condensin loading and translocation along DNA controls eukaryotic chromosome structure in vivo remains poorly understood. To address this question, we took advantage of a specialized condensin, which organizes the 3D conformation of X chromosomes to mediate dosage compensation (DC) in C. elegans. Condensin DC is recruited and spreads from a small number of recruitment elements on the X chromosome (rex). We found that ectopic insertion of rex sites on an autosome leads to bidirectional spreading of the complex over hundreds of kilobases. On the X chromosome, strong rex sites contain multiple copies of a 12-bp sequence motif and act as TAD borders. Inserting a strong rex and ectopically recruiting the complex on the X chromosome or an autosome creates a loop-anchored TAD. Unlike the CTCF system, which controls TAD formation by cohesin, direction of the 12-bp motif does not control the specificity of loops. In an X;V fusion chromosome, condensin DC linearly spreads into V and increases 3D DNA contacts, but fails to form TADs in the absence of rex sites. Finally, we provide in vivo evidence for the loop extrusion hypothesis by targeting multiple dCas9-Suntag complexes to an X chromosome repeat region. Consistent with linear translocation along DNA, condensin DC accumulates at the block site. Together, our results support a model whereby strong rex sites act as insulation elements through recruitment and bidirectional spreading of condensin DC molecules and form loop-anchored TADs.


2008 ◽  
Vol 294 (1) ◽  
pp. F93-F99 ◽  
Author(s):  
Hassan Chaib ◽  
Bethan E. Hoskins ◽  
Shazia Ashraf ◽  
Meera Goyal ◽  
Roger C. Wiggins ◽  
...  

Steroid-resistant nephrotic syndrome is a malfunction of the kidney glomerular filter that leads to proteinuria, hypoalbuminemia, edema, and renal failure. Recently, we identified recessive mutations in the phospholipase C epsilon 1 gene ( PLCE1) as a new cause of early-onset nephrotic syndrome and demonstrated interaction of PLCε1 with IQGAP1. To further elucidate the mechanism by which PLCE1 mutations cause nephrotic syndrome, we sought to identify new protein interaction partners of PLCε1. We utilized information from the genetic interaction network of C. elegans. It relates the PLCE1 ortholog ( plc-1) to the C. elegans ortholog ( lin-45) of human BRAF ( v-raf murine sarcoma viral oncogene homolog B1). We hypothesized that this may indicate a functional protein-protein interaction. Using GST pull down of HEK293T cell lysates in vitro and coimmunoprecipation of mouse kidney lysates in vivo, we show that BRAF interacts with PLCε1. By immunohistochemistry in rat kidney, we demonstrate that both proteins are coexpressed and colocalize in developing and mature glomerular podocytes, reporting for the first time the expression of BRAF in the glomerular podocyte.


2003 ◽  
Vol 161 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Alper Romano ◽  
Annika Guse ◽  
Ivica Krascenicova ◽  
Heinke Schnabel ◽  
Ralf Schnabel ◽  
...  

The Aurora B kinase complex is a critical regulator of chromosome segregation and cytokinesis. In Caenorhabditis elegans, AIR-2 (Aurora B) function requires ICP-1 (Incenp) and BIR-1 (Survivin). In various systems, Aurora B binds to orthologues of these proteins. Through genetic analysis, we have identified a new subunit of the Aurora B kinase complex, CSC-1. C. elegans embryos depleted of CSC-1, AIR-2, ICP-1, or BIR-1 have identical phenotypes. CSC-1, BIR-1, and ICP-1 are interdependent for their localization, and all are required for AIR-2 localization. In vitro, CSC-1 binds directly to BIR-1. The CSC-1/BIR-1 complex, but not the individual subunits, associates with ICP-1. CSC-1 associates with ICP-1, BIR-1, and AIR-2 in vivo. ICP-1 dramatically stimulates AIR-2 kinase activity. This activity is not stimulated by CSC-1/BIR-1, suggesting that these two subunits function as targeting subunits for AIR-2 kinase.


2013 ◽  
Vol 24 (12) ◽  
pp. 2034-2044 ◽  
Author(s):  
Lars Boeckmann ◽  
Yoshimitsu Takahashi ◽  
Wei-Chun Au ◽  
Prashant K. Mishra ◽  
John S. Choy ◽  
...  

The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein–labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.


Author(s):  
Brandon Lam

Cancer is one of the most prevalent and deadly diseases in today's society, affecting millions of people around the globe. Uncontrolled cell division and migration which are two of the six major hallmarks of cancer have been studied extensively in vitro, however in vivo these hallmarks are not well understood. We used the Caenorhabditis elegans nematode worm as our model organism in order to study these two hallmarks. In unfavorable environmental conditions such as starvation, C. elegans can enter a developmental arrest in where certain cell metabolism ceases to continue, this stage is known as L1 arrest. Normally in L1 arrested worms, there are 2 distinct Q neuroblast cells which are precursors of sensory and interneurons that do not divide and migrate. However, when we mutate certain genes, we noticed that the two Q neuroblasts inappropriately divided and migrated, this suggests that we have identified a good model to study uncontrolled cell division and migration. We have already found one gene that when mutated, results in the Q neuroblasts inappropriately dividing and migrating at L1 arrest, now we are looking for other mutated genes that can cause this phenotype, this ultimately allows us to identify new mechanisms that cause an increase risk in cancer.​


2006 ◽  
Vol 26 (12) ◽  
pp. 4489-4498 ◽  
Author(s):  
Alessandra Di Bacco ◽  
Jian Ouyang ◽  
Hsiang-Ying Lee ◽  
Andre Catic ◽  
Hidde Ploegh ◽  
...  

ABSTRACT Posttranslational modification of substrates by the small ubiquitin-like modifier, SUMO, regulates diverse biological processes, including transcription, DNA repair, nucleocytoplasmic trafficking, and chromosome segregation. SUMOylation is reversible, and several mammalian homologs of the yeast SUMO-specific protease Ulp1, termed SENPs, have been identified. We demonstrate here that SENP5, a previously uncharacterized Ulp1 homolog, has SUMO C-terminal hydrolase and SUMO isopeptidase activities. In contrast to other SENPs, the C-terminal catalytic domain of SENP5 preferentially processed SUMO-3 compared to SUMO-1 precursors and preferentially removed SUMO-2 and SUMO-3 from SUMO-modified RanGAP1 in vitro. In cotransfection assays, SENP5 preferentially reduced high-molecular-weight conjugates of SUMO-2 compared to SUMO-1 in vivo. Full-length SENP5 localized to the nucleolus. Deletion of the noncatalytic N-terminal domain led to loss of nucleolar localization and increased de-SUMOylation activity in vivo. Knockdown of SENP5 by RNA interference resulted in increased levels of SUMO-1 and SUMO-2/3 conjugates, inhibition of cell proliferation, defects in nuclear morphology, and appearance of binucleate cells, revealing an essential role for SENP5 in mitosis and/or cytokinesis. These findings establish SENP5 as a SUMO-specific protease required for cell division and suggest that mechanisms involving both the catalytic and noncatalytic domains determine the distinct substrate specificities of the mammalian SUMO-specific proteases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


Sign in / Sign up

Export Citation Format

Share Document