scholarly journals TCAB1 is necessary for telomerase assembly

2021 ◽  
Author(s):  
Basma S Al-Masraf ◽  
Gloria I Perez ◽  
Kate Adams-Boone ◽  
Scott B Cohen ◽  
Li Han ◽  
...  

The ribonucleoprotein telomerase counteracts telomere shortening by adding repetitive sequences to the ends of human chromosomes. Telomerase is composed of the reverse transcriptase TERT, the telomerase RNA, and several auxiliary proteins that associate with the telomerase RNA, including TCAB1. TCAB1 is necessary for telomere maintenance in human cells and has been proposed to play a role in telomerase trafficking to Cajal bodies and telomeres, and in telomerase RNA folding. Here we show that, contrary to previous findings, TCAB1 is essential for telomerase assembly. We demonstrate that in the absence of TCAB1, the telomerase RNA is trapped in the nucleolus, a phase separated nuclear organelle, while TERT localizes to the nucleoplasm and is excluded from the nucleolus. Thus, nucleolar phase separation constitutes a barrier that counteracts telomerase assembly and TCAB1 is required to extract the telomerase RNA from the nucleolus, providing a molecular mechanism for the essential role of TCAB1 in telomerase function.

Blood ◽  
2011 ◽  
Vol 118 (23) ◽  
pp. 6068-6077 ◽  
Author(s):  
Yang Wang ◽  
Mei-Feng Shen ◽  
Sandy Chang

Abstract Maintenance of mammalian telomeres requires both the enzyme telomerase and shelterin, which protect telomeres from inappropriately activating DNA damage response checkpoints. Dyskeratosis congenita is an inherited BM failure syndrome disorder because of defects in telomere maintenance. We have previously shown that deletion of the shelterin component Pot1b in the setting of telomerase haploinsufficiency results in rapid telomere shortening and fatal BM failure in mice, eliciting phenotypes that strongly resemble human syskeratosis congenita. However, it was unclear why BM failure occurred in the setting of Pot1b deletion. In this study, we show that Pot1b plays an essential role in HSC survival. Deletion of Pot1b results in increased apoptosis, leading to severe depletion of the HSC reserve. BM from Pot1bΔ/Δ mice cannot compete with BM from wild-type mice to provide multilineage reconstitution, indicating that there is an intrinsic requirement for Pot1b the maintenance of HSC function in vivo. Elimination of the p53-dependent apoptotic function increased HSC survival and significantly extended the lifespan of Pot1b-null mice deficient in telomerase function. Our results document for the first time the essential role of a component of the shelterin complex in the maintenance of HSC and progenitor cell survival.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bin Wang ◽  
Lei Zhang ◽  
Tong Dai ◽  
Ziran Qin ◽  
Huasong Lu ◽  
...  

AbstractEmerging evidence suggests that liquid–liquid phase separation (LLPS) represents a vital and ubiquitous phenomenon underlying the formation of membraneless organelles in eukaryotic cells (also known as biomolecular condensates or droplets). Recent studies have revealed evidences that indicate that LLPS plays a vital role in human health and diseases. In this review, we describe our current understanding of LLPS and summarize its physiological functions. We further describe the role of LLPS in the development of human diseases. Additionally, we review the recently developed methods for studying LLPS. Although LLPS research is in its infancy—but is fast-growing—it is clear that LLPS plays an essential role in the development of pathophysiological conditions. This highlights the need for an overview of the recent advances in the field to translate our current knowledge regarding LLPS into therapeutic discoveries.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 3927-3935 ◽  
Author(s):  
Sonia Franco ◽  
Henri J. van de Vrugt ◽  
Piedad Fernández ◽  
Miguel Aracil ◽  
Fre Arwert ◽  
...  

Abstract A number of DNA repair proteins also play roles in telomere metabolism. To investigate whether the accelerated telomere shortening reported in Fanconi anemia (FA) hematopoietic cells relates to a direct role of the FA pathway in telomere maintenance, we have analyzed telomere dynamics in Fancg-deficient mouse and human cells. We show here that both hematopoietic (stem and differentiated bone marrow cells, B and T lymphocytes) and nonhematopoietic (germ cells, mouse embryonic fibroblasts [MEFs]) Fancg-/- mouse cells display normal telomere length, normal telomerase activity, and normal chromosome end-capping, even in the presence of extensive clastogen-induced cytogenetic instability (mitomycin C [MMC], gamma-radiation). In addition, telomerase-deficient MEFs with humanlike telomere length and decreased Fancg expression (G5 Terc-/-/Fancg shRNA3 MEFs) display normal telomere maintenance. Finally, early-passage primary fibroblasts from patients with FA of complementation group G as well as primary human cells with reduced FANCG expression (FANCG shRNA IMR90 cells) show no signs of telomere dysfunction. Our observations indicate that accelerated telomere shortening in patients with FA is not due to a role of FANCG at telomeres but instead may be secondary to the disease. These findings suggest that telomerase-based therapies could be useful prophylactic agents in FA aplastic anemia by preserving their telomere reserve in the context of the disease. (Blood. 2004;104:3927-3935)


2008 ◽  
Vol 11 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Tae Ho Lee ◽  
Adrian Tun-Kyi ◽  
Rong Shi ◽  
Jormay Lim ◽  
Christina Soohoo ◽  
...  

Genetics ◽  
1999 ◽  
Vol 152 (4) ◽  
pp. 1501-1512 ◽  
Author(s):  
Akira Matsuura ◽  
Taku Naito ◽  
Fuyuki Ishikawa

Abstract The Schizosaccharomyces pombe checkpoint gene named rad3+ encodes an ATM-homologous protein kinase that shares a highly conserved motif with proteins involved in DNA metabolism. Previous studies have shown that Rad3 fulfills its function via the regulation of the Chk1 and Cds1 protein kinases. Here we describe a novel role for Rad3 in the control of telomere integrity. Mutations in the rad3+ gene alleviated telomeric silencing and produced shortened lengths in the telomere repeat tracts. Genetic analysis revealed that the other checkpoint rad mutations rad1, rad17, and rad26 belong to the same phenotypic class with rad3 with regard to control of the telomere length. Of these mutations, rad3 and rad26 have a drastic effect on telomere shortening. tel1+, another ATM homologue in S. pombe, carries out its telomere maintenance function in parallel with the checkpoint rad genes. Furthermore, either a single or double disruption of cds1+ and chk1+ caused no obvious changes in the telomeric DNA structure. Our results demonstrate a novel role of the S. pombe ATM homologues that is independent of chk1+ and cds1+.


2008 ◽  
Vol 19 (9) ◽  
pp. 3793-3800 ◽  
Author(s):  
Rebecca L. Tomlinson ◽  
Eladio B. Abreu ◽  
Tania Ziegler ◽  
Hinh Ly ◽  
Christopher M. Counter ◽  
...  

Telomere maintenance by telomerase is critical for the unlimited division potential of most human cancer cells. The two essential components of human telomerase, telomerase RNA (hTR) and telomerase reverse transcriptase (hTERT), are recruited from distinct subnuclear sites to telomeres during S phase. Throughout the remainder of the cell cycle hTR is found primarily in Cajal bodies. The localization of hTR to Cajal bodies and telomeres is specific to cancer cells where telomerase is active and is not observed in primary cells. Here we show that the trafficking of hTR to both telomeres and Cajal bodies depends on hTERT. RNA interference–mediated depletion of hTERT in cancer cells leads to loss of hTR from both Cajal bodies and telomeres without affecting hTR levels. In addition, expression of hTERT in telomerase-negative cells (including primary and ALT cancer cell lines) induces hTR to localize to both sites. Factors that did not stimulate hTR localization in our experiments include increased hTR RNA levels and Cajal body numbers, and expression of SV40 large T antigen and oncogenic Ras. Our findings suggest that the trafficking of telomerase to Cajal bodies and telomeres in cancer cells correlates with and depends on the assembly of the enzyme.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhiyuan You ◽  
Wen-Xue Jiang ◽  
Ling-Yun Qin ◽  
Zhou Gong ◽  
Wei Wan ◽  
...  

AbstractAutophagy receptor p62/SQSTM1 promotes the assembly and removal of ubiquitylated proteins by forming p62 bodies and mediating their encapsulation in autophagosomes. Here we show that under nutrient-deficient conditions, cellular p62 specifically undergoes acetylation, which is required for the formation and subsequent autophagic clearance of p62 bodies. We identify K420 and K435 in the UBA domain as the main acetylation sites, and TIP60 and HDAC6 as the acetyltransferase and deacetylase. Mechanically, acetylation at both K420 and K435 sites enhances p62 binding to ubiquitin by disrupting UBA dimerization, while K435 acetylation also directly increases the UBA-ubiquitin affinity. Furthermore, we show that acetylation of p62 facilitates polyubiquitin chain-induced p62 phase separation. Our results suggest an essential role of p62 acetylation in the selective degradation of ubiquitylated proteins in cells under nutrient stress, by specifically regulating the assembly of p62 bodies.


2013 ◽  
Vol 42 (5) ◽  
pp. 2919-2931 ◽  
Author(s):  
Anna Ogrocká ◽  
Pavla Polanská ◽  
Eva Majerová ◽  
Zlatko Janeba ◽  
Jiří Fajkus ◽  
...  

Abstract Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are important for the maintenance of genomic stability. Telomeres were considered as typical heterochromatic regions, but in light of recent results, this view should be reconsidered. Asymmetrically located cytosines in plant telomeric DNA repeats may be substrates for a DNA methyltransferase enzyme and indeed, it was shown that these repeats are methylated. Here, we analyse the methylation of telomeric cytosines and the length of telomeres in Arabidopsis thaliana methylation mutants (met 1-3 and ddm 1-8), and in their wild-type siblings that were germinated in the presence of hypomethylation drugs. Our results show that cytosine methylation in telomeric repeats depends on the activity of MET1 and DDM1 enzymes. Significantly shortened telomeres occur in later generations of methylation mutants as well as in plants germinated in the presence of hypomethylation drugs, and this phenotype is stably transmitted to the next plant generation. A possible role of compromised in vivo telomerase action in the observed telomere shortening is hypothesized based on telomere analysis of hypomethylated telomerase knockout plants. Results are discussed in connection with previous data in this field obtained using different model systems.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1880-1880
Author(s):  
Tomasz Stoklosa ◽  
Anna Deregowska ◽  
Katarzyna Pruszczyk ◽  
Iwona Solarska ◽  
Marcin M Machnicki ◽  
...  

Abstract Genomic instability has many sources, among others, shortening of telomeres, nucleoprotein complexes located at the ends of chromosomes. Tumor cells have aberrant mechanisms of telomere maintenance: their telomeres are shortened, no longer preventing chromosome end-to-end fusion and recombination, but frequently not short enough to lead to cell senescence. Both telomerase and shelterin complexes are involved in telomere homeostasis. Reduction in the telomere length is considered as one of the features of chronic myeloid leukemia (CML) similar to other human malignancies and telomere shortening is correlated with disease progression from the chronic phase (CML-CP) to the blastic phase (CML-BP)1. However, recent report shows that shorter telomeres can actually be detected in patients who discontinued imatinib and are in treatment-free remission as compared to those who relapsed2. Therefore, there is no agreement on the telomere length dynamics in CML evolution. Moreover, the precise role of telomere-associated proteins, including shelterin complex in BCR-ABL1-mediated genomic instability in CML progression and resistance to TKIs, is not fully elucidated. Initially, we confirmed that the telomere shortening was positively correlated with CML progression (CML-BP in comparison to CML-CP). However, in CD34+ samples from CML-CP TKI-resistant patients in comparison to CML-CP patients, an increase in telomere length was observed. This suggests that shortening of telomeres in CML progression may have a biphasic scenario. This can be explained by alternative telomere lengthening (ALT) mechanisms, since no significant changes in the expression of subunits of the telomerase complex and its enzymatic activity were observed at different phases of the disease; enzymatic activity of telomerase was measured immunoenzymatically, while length of telomeres was determined by Southern blotting. Then we decided to analyze possible involvement of shelterin complex and of ALT mechanisms in CML progression. Importantly, expression of the three members of the shelterin complex, Protection Of Telomeres 1 (POT1), Repressor Activator Protein 1 (RAP1) and Tankyrase 1 (TNKS1) was significantly upregulated in CML-BP (10 samples) as compared to CML-CP (15 samples) and was also positively correlated with BCR-ABL1 expression. Moreover, as determined by TKI treatment of CD34+ CML-BP primary cells, expression of POT1 was BCR-ABL1-dependent. No significant changes were observed in the expression of other members of the shelterin complex, namely TINT1-PTOP-PIP1 (TPP1), TRF1 interactor 2 (TIN2) and Tankyrase 2 (TNKS2). Also telomere repeat-binding factor 1 and 2 (TRF1 and TRF2), which are responsible for anchoring shelterin complex to the double stranded telomeric repeats remain stable in the course of the disease. Expression of subunits of telomerase and shelterin complexes was examined by RT-qPCR and Western blotting. This was confirmed in K562 and K562 imatinib-resistant cell line model. Somatic mutations in POT1 have been recently described in human tumors including chronic lymphocytic leukemia (CLL). In CLL, mutations in POT1 affect telomere stability and are associated with shorter survival in patients receiving chemotherapy as a frontline treatment. We have screened our NGS data from targeted sequencing in a cohort of patients who progressed to CML-BP (paired CP and BP samples, n=10 and BP samples, n=9) but we did not detect any somatic mutations in POT1. This is in accordance with our data on POT1 upregulated expression and suggests that dysregulation of shelterin complex during progression of CML differs significantly from CLL. In conclusion, we present the first comprehensive analysis of the expression of all members of the shelterin complex in the course of CML. We postulate that abnormal expression of selected members such as POT1, RAP1 and TNKS1 may be responsible for the aberrant telomere maintenance mechanisms in CML cells and may play an important role in genomic instability associated with CML progression. References: 1. Brummendorf TH, et al. Blood 2000; 95:1883-1890. 2. Caocci et al. Journal of Hematology & Oncology 2016; 9:63; Disclosures Seferynska: Novartis: Consultancy, Honoraria.


2008 ◽  
Vol 28 (6) ◽  
pp. 1875-1882 ◽  
Author(s):  
Majdi M. Kabaha ◽  
Benny Zhitomirsky ◽  
Irit Schwartz ◽  
Yehuda Tzfati

ABSTRACT Telomerase is a ribonucleoprotein reverse transcriptase that copies a short template within its integral telomerase RNA moiety (TER) onto eukaryotic chromosome ends, thus compensating for incomplete replication and degradation. The highly divergent yeast TER is structured in three long arms, with a catalytic core at its center. A binding site for the protein Ku80 is conserved within the 5′ arm of TER in Saccharomyces but not in Kluyveromyces budding yeast species. Consistently, KU80 deletion in Kluyveromyces lactis does not affect telomere length, while it causes telomere shortening in Saccharomyces cerevisiae. We found elements in the 5′ arm of K. lactis TER that are crucial for telomerase activity and stability. However, we found no indication of the association of Ku80 with this arm. Although the overexpression of Ku80 rescues a particular mutation in K. lactis TER1 that phenocopies a telomerase null mutation, this effect is indirect, caused by the repression of the recombination pathway competing for telomere maintenance. Interestingly, the overexpression of Est3, an essential telomerase protein whose function is still unknown, suppresses the phenotypes of mutations in this arm. These results indicate that the 5′ arm of K. lactis TER has critical roles in telomerase function, which may be linked to the function of Est3.


Sign in / Sign up

Export Citation Format

Share Document